第09章 立体几何.docx
《第09章 立体几何.docx》由会员分享,可在线阅读,更多相关《第09章 立体几何.docx(27页珍藏版)》请在第壹文秘上搜索。
1、第九章立体几何第一节空间点、线、面的位置关系与空间几何体1. (2023全国甲卷理科11)在四棱锥P-ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,NPCA=45。,则的面积为()A.2y2B.32C.42D.52【解析】如图所示,取4民仁。的中点分别为知,因为AB=4,所以MN=4,AC=4.叉PC=PD=3,过P作尸OJ平面A3CD,则OeMZV.连接PMoAOC,则尸N_LCO,PV=32-22=5.今ON=x,KPO2=5-X2,OA2=4+(4-x)2fE42=O2+PO2=4+(4-)2+5-x2=25-8x.夫人”一由小儿/T“,Yac2+pc2-32+9-(25-
2、8x)及在JfAC中,因为Z.PCA=45,所以8S45=.2ACPC24232解得x=l,则ON=LPO=2.过O作LBC,垂足为“,连接PH,则OH=2,PH=2戊.所以Szij8c=gx8CxP”=gx4x2=4.故选C.【评注】本题重点考查了四棱锥中侧面、底面、高、斜高等几何要素之间的关系,涉及到空间想象能力与运算求解能力,2024届的考生应在空间几何体方面强化,属中档难度.2. (2023全国甲卷理科15)15.在正方体ABCD-AgG中,E,尸分别为CRA4的中点,则以所为直径的球面与正方体每条棱的交点总数为.【解析】如图所示,EF=显AB,所以球。是正方体A88-A8GA的棱切球
3、,即球。与每条棱都有一个公共点,故填12.3. (2023全国甲卷文科16)在正方体ABCO-A4GR中,AB=4,。为AG的中点,若该正方体的棱与球。的球面有公共点,则球0的半径的取值范围是.【分析】当球是正方体的外接球时半径最大,当边长为4的正方形是球的大圆的内接正方形时半径达到最小.【解析】设球的半径为/?.当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径2R为体对角线长ACl=42+42+42=43,即2R=46,R=26,故RmaX=2小;分别取侧极A41,8g,CG,)的中点,G,N,显然
4、四边形MNG”是边长为4的正方形,且。为正方形MNGH的对角线交点,连接MG,则MG=4,当球的一个大圆恰好是四边形MNG”的外接圆,球的半径达到最小,即R的最小值为2垃.综上,/?22,23.故答案为2,2J5.4. (2023全国乙卷理科3,文科3)如图所示,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可.【解析】如图所示,在长方体A8CO-AgCR中,AB=BC=2,AA=3,点K为所在棱上靠近点4,G,R,A的三等分点,QL,M,N为
5、所在棱的中点,则三视图所对应的几何体为长方体ABCD-AIBlCR去掉长方体ONICI-LMHBl之后所得的几何体.5. (2023全国乙卷理科8)已知圆锥尸O的底面半径为近,。为底面圆心,R4,P3为圆锥的母线,NAO3=120。,若/B的面积等于外叵,则该圆锥的体积为()4A.B.JC.3D.36【解析】如图所示,取AB中点为“,连接OH,Ph.在圆O中,因为R=JJ,NAQ3=120。,所以OH=,AB=3.2qs93又S%a8=7,所以尸二-所以该圆锥的体积为=兀.故选B.6. (2023全国乙卷文科16)已知点S,A8,C均在半径为2的球面上,AABC是边长为3的等边三角形,S4_L
6、平面ABC,则S4=.【分析】先用正弦定理求底面外接圆半径,再结合直棱柱的外接球以及球的性质运算求解.【解析】如图所示,将三棱锥S-ABC转化为直三棱柱SMN-ABC,设/MBC的外接圆圆心为。,半径为广,2r=_2_=2y3则SinZACB3,可得r=正,2设三棱锥S-ABC的外接球球心为O,连接OAOq,AO1,则OA=2,AO1=3,OOx=l=gSA,所以SA=2.故答案为2.【评注】多面体与球切、接问题的求解方法:(1)涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题求解;(2)若球面上四点RARC构成的三条线段4,尸
7、3,PC两两垂直,且Q4=,PB=btPC=C,一般把有关元素“补形”成为一个球内接长方体,根据求解:(3)正方体的内切球的直径为正方体的棱长:(4)球和正方体的棱相切时,球的直径为正方体的面对角线长:(5)利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.7. (2023新高考I卷14)在正四棱台A8CD-Al8CA中,AB=2,AiBl=lf=2,则该棱台的体积为.【解析】如图所示,将正四棱台ABCo-A4GA补成正四枝锥S-A5CQ,因为A5=2,Aq=1,A41=2,所以SA=20,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第09章 立体几何 09