概率论与数理统计主要内容小结.docx
《概率论与数理统计主要内容小结.docx》由会员分享,可在线阅读,更多相关《概率论与数理统计主要内容小结.docx(9页珍藏版)》请在第壹文秘上搜索。
1、概率论与数理统计主要内容小结概率局部1、全概率公式与贝叶斯公式全概率公式:其中。,当,纥是空间S的一个划分。贝叶斯公式:P由I公=广幻P(A田)力P(Bj)P(AIBj)其中男,星,8”是空间S的一个划分。2、互不相容与互不相关AB互不相容OAn8=。,P(Af8)二。事件AB互相独立=P(AB)=P(八)(B);两者没有必然联系3、几种常见随机变量概率密度与分布律:两点分布,二项分布,泊松分布,均匀分布,二项分布,指数分布,正态分布。X伙1,P),即二点分布,那么分布律为Px=k=pk0-p)i,k=0,1.X久,p),即二项分布,那么分布律为Px=k=CP1-p)n-k=0,1,.,n.X
2、ie,xw(a,b)X万(,即泊松分布,那么分布律为Px=k=-=0,1,XU(,b),即均匀分布,那么概率密度为f()=b-a0,其它x(。),即指数分布,那么概率密度为F(X)=Je.0,其它1*2XN(4,),即正态分布,那么那么概率密度为/()=-e2,一OOVXO(或g(x)O),那么Y概率密度为:其中,z(y)是g(x)的反函数,且有=ming(-OO),g(+oo),7=maxg(-oo),g(+8).(ii)利用分布函数计算:先求y=g)值域,再在该值域求Y的分布函数那么有4(y)=F(y)常用求导公式5、二维随机变量分布律对于二维连续性随机变量(X,y),其联合概率密度为7(
3、x,y),其联合分布函数为/(x,y),那么F(x,y)=,:/(,V)dvdu,概率密度性质:(i)/(x,y)O,(ii)f(u.v)dvduJ-DOJ-X概率密度f(x,y),求区域概率有P(x,)D=f(x,y)dydx,D边缘分布函数为Fx(x)=JJ:/(,v)dvdu,FX(y)=v)dudv,边缘概率密度为Fx(X)=f(x9y)dy,f(y)=f(x,y)d.J-8J-OC条件分布函数为FXIy(XIy)=L当弋八,KuUI幻=L弊卜匕条件概率密度为rUy)=坐斗,4X(yI幻=需-f(y)fM对于离散情形,设联合分布律为PX=i,Y=yj=Pij边缘概率密度为PX=Xi=Y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 概率论 数理统计 主要内容 小结