A2O工艺及其改进工艺.docx
《A2O工艺及其改进工艺.docx》由会员分享,可在线阅读,更多相关《A2O工艺及其改进工艺.docx(10页珍藏版)》请在第壹文秘上搜索。
1、一、A2/0工艺A2O工艺流程简单,较易于运行管理,总的水力停留时间较短,一般缺氧区的水力停留时间为0.51.0小时,泥龄也短,一般为35天,使剩余污泥中磷含量高,一般为2.5%以上。在反硝化脱氮过程中直接利用废水中的有机物为碳源,降低了运行。但在A20工艺中,影响生物除磷的关键因子是厌氧池的污泥回流量。因为从沉淀池回流污泥中会携带一定量的硝态氮,污泥回流量越大,携带的硝态氮越多,反硝化利用的有机物就越多,由于有机质的减少影响了厌氧释磷,从而导致除磷效果下降。如果污泥回流量小,虽然携带的硝态氮少,但同时进入厌氧池中的聚磷菌相应减少,同样影响系统的除磷功能。所以对A2OI艺来说,污泥回流比通常控
2、制在进水流量的0.5L0倍左右二、传统A2/0工艺存在的主要问题及解决途径1、聚磷菌和反硝化菌对碳源的竞争问题在脱氮除磷A20工艺中,碳源主要消耗于释磷、反硝化和异养菌正常代谢等方面。其中释磷和反硝化的反应速率与进入各自反应池中的易降解碳源,尤其是挥发性有机脂肪酸(VFA)的数量关系很大。我国市政污水中易降解的有机碳源相对较低,南方城市更为明显,在A2/0工艺中,聚磷菌优先利用进水中的碳源进行厌氧释磷,使得在后续缺氧反硝化过程中碳源不足,从而影响脱氮效果,因此在A20工艺中存在释磷和反硝化因碳源不足而引发的竞争问题,针对这一问题提出了以下几种途径解决。1.1改变进水方式分点进水,在厌氧段和缺氧
3、段根据实际情况合理分配分段进水流量,以便同时满足聚磷菌和反硝化菌对碳源的需要,如:中国市政工程华北设计研究院结合实际工程设计,开发应用了多点进水倒置A2/0工艺;杨殿海等开发的改良A2/0工艺(MAA0);李燕峰等研究的分点进水厌氧一多级缺氧好氧活性污泥工艺和Chang研究的AOAO工艺等。将生化区的进水碳源分配给厌氧池和缺氧池来同时达到释磷和反硝化的最佳,以此解决碳源的竞争问题。1.2一碳两用随着反硝化除磷细菌DPB的发现,形成了以厌氧污泥中的PHB为碳源的反硝化工艺,如:BCFS、Dephanox等工艺,其主要特点是碳源利用率高,在反硝化除磷工艺中,废水中的碳源在厌氧段由DPB以聚羟基丁酸
4、脂(PHB)的形式储存起来,在缺氧环境中这部分PHB被DPB同时用于反硝化和吸磷作用,达到了一碳两用的目的,但反硝化除磷工艺目前面临着DPB的富集和利用不足等问题。1.3补充碳源补充的碳源可分为两类:一类是包括甲醇、乙醇、丙酮和乙酸等可用作外部碳源的化合物,另一类是易生物降解的COD源,它们可以是初沉池污泥发酵的上清液或其它酸性消化池的上清液或者是某种具有大量易生物降解COD组分的有机废水等,如:麦芽工业废水、水果和蔬菜工业废水和果汁工业废水等。碳源的投加位置可以是缺氧反应池,也可以是厌氧反应池,在厌氧反应池中投加碳源不仅能改善除磷,而且能增加硝酸盐的去除潜力,因为投加易生物降解的COD能使起
5、始的脱氮速率加快,并能运行较长的一段时间。但此方法运行费用比较高,一般适合小型污水的处理。1.4其它方法可以通过提高系统有机负荷来解决碳源竞争问题。进水有机负荷与进水流量和整个系统的有效容积有关,一方面在有效容积不变的条件下增加进水流量;另一方面在进水流量不变的情况下,通过缩短运行周期减少有效容积达到提高有机负荷目的。2反硝化菌、聚磷菌和硝化菌的泥龄矛盾反硝化细菌和聚磷细菌为短污泥龄细菌,污泥龄越短则反硝化速率越快,而除磷的效果也越好。而硝化细菌繁殖速度慢,世代周期较长,属长污泥龄细菌,过短的污泥龄会使系统中硝化细菌过量外排而影响其硝化功能。因此在统一的污泥系统中,为了同时获得较好的释磷、反硝
6、化和硝化效果,势必会造成系统运行上的泥龄矛盾。实际生产中,A2/0系统常采用1015d的长污泥龄以满足硝化功能,因此也就造成系统在一定程度上牺牲了部分有机物降解和除磷效率。为了使各类菌种最大程度上发挥自身的优势,研究者提出了以下几种解决途径。2.1 双污泥脱氮除磷工艺双污泥脱氮除磷工艺,如:李勇等开发的改良A?/。双泥工艺;PASF工艺等。该类工艺分前后两段,前段采用活性污泥法,主要由厌氧池、缺氧池、短泥龄好氧池、沉淀池等构筑物组成;后段为生物膜法,主要采用曝气生物滤池。污水依次流经活性污泥段和生物膜段。系统回流包括污水回流和污泥回流,污水回流是将部分生物滤池出水回流至缺氧池,以保证脱氮效果;
7、污泥回流则是将沉淀池污泥部分回流到厌氧池,其余富含磷的剩余污泥被排掉。采用微生物分相的方法使硝化细菌与系统内其他细菌分开培养的改进工艺,可使不同功能的微生物能在各自有利的条件下生长。将除磷和脱氮在空间或时间上分开,解决了聚磷菌、硝化菌不同泥龄的矛盾,具有稳定的处理效果和较高的处理效率。控制硝化滤池出水硝酸盐的回流量,解决厌氧段反硝化与除磷菌释磷的矛盾。创造有利于反硝化除磷菌的生长环境,降低了对碳源的需求。2.2 将厌氧池上清液排出,辅以化学除磷根据聚磷菌的特性,可以在污水处理工艺中将磷酸盐富集在厌氧段的上清液中,通过排除富磷上清液达到除磷的目的,同时可以有效克服污泥龄对硝化效果的负面影响,而且
8、富磷上清液可通过化学法处理而达到磷的回收。这样做的优点:一是除磷效果不依赖于泥龄,剩余污泥减少,可以降低污泥处理费用;二是保证了硝化菌的生长条件,实现长泥龄下的同时除磷脱氮。然而辅以化学除磷会增加运行费用,厌氧池中进行化学除磷的上清液量也会影响整个系统的除磷效果,同时还应考虑设备防腐问题。3回流污泥中硝酸盐对厌氧释磷的影响在A20工艺中,回流污泥中含有大量的硝酸盐,回流到厌氧区后优先利用进水中的VFA等易降解碳源进行反硝化,从而使厌氧释磷所需碳源不足,影响了系统充分释磷,从而影响聚磷菌在好氧池中的吸磷量,最终使除磷量减少,使系统的除磷效率降低。如何解决回流污泥中硝酸盐对厌氧释磷的影响,对此研究
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- A2O 工艺 及其 改进