人工智能基础及应用(微课版) 习题及答案 第4章 机器学习.docx
《人工智能基础及应用(微课版) 习题及答案 第4章 机器学习.docx》由会员分享,可在线阅读,更多相关《人工智能基础及应用(微课版) 习题及答案 第4章 机器学习.docx(3页珍藏版)》请在第壹文秘上搜索。
1、习题一、选择题1 .关于k-近邻算法说法错误的是OA是机器学习B是无监督学习Ck代表分类个数Dk的选择对分类结果没有影响2 .关于k-近邻算法说法错误的是OA一般使用投票法进行分类任务Bk-近邻算法属于懒惰学习C训练时间普遍偏长D距离计算方法不同,效果也可能显著不同3 .关于决策树算法说法错误的是OA受生物进化启发B属于归纳推理C用于分类和预测D自顶向下递推4 .利用信息增益来构造的决策树的算法是OAID3决策树B递归C归约DFIFO5 .决策树构成的顺序是()A特征选择、决策树生成、决策树剪枝B决策树剪枝、特征选择、决策树生成C决策树生成、决策树剪枝、特征选择D特征选择、决策树剪枝、决策树生
2、成6 .朴素贝叶斯分类器属于O假设A样本分布独立B属性条件独立C后验概率已知D先验概率已知7 .支持向量机是指OA对原始数据进行采样得到的采样点B决定分类平面可以平移的范围的数据点C位于分类面上的点D能够被正确分类的数据点8 .关于支持向量机的描述错误的是OA是一种监督学习的方式B可用于多分类问题C支持非线性核函数D是一种生成式模型9 .关于k-均值算法的描述错误的是OA算法开始时,k-means算法时需要指定中心点B算法效果不受初始中心点的影响C算法需要样本与中心点之间的距离D属于无监督学习10 .k-Medoids与k-means聚类最大的区别在于()A中心点的选择规则B距离的计算法方法C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能基础及应用微课版 习题及答案 第4章 机器学习 人工智能 基础 应用 微课版 习题 答案 机器 学习