第54讲圆锥曲线的综合应用-证明、探究性问题(达标检测)(教师版).docx
《第54讲圆锥曲线的综合应用-证明、探究性问题(达标检测)(教师版).docx》由会员分享,可在线阅读,更多相关《第54讲圆锥曲线的综合应用-证明、探究性问题(达标检测)(教师版).docx(24页珍藏版)》请在第壹文秘上搜索。
1、圆锥曲线的综合应用证明,探究性问题达标检测A组一应知应会221. (2020沙坪坝区校级模拟)已知双曲线C:三-Xl(a0,b0)的左焦点为Fi,过Fi的直线Ia2b2与y轴相交于点M,与C的右支相交于点P,且M为线段P尸1的中点,若C的渐近线上存在一点N,使得诵=2而,则C的离心率为()A.2B.C.2D.53【分析】由题可知,Fi(-c,0),直线/的斜率一定存在,设其方程为y=&(x+c),则M(0,kc),P(c,2kc)f222将点P的坐标代入双曲线C的方程,有j4kC,由平面向量的线性坐标运算可得点N(22,2i3abc),代入y=且K得上=Sk,联立,消去也并结合离心率e=*即可
2、得解.3aa2a【解答】解:由题可知,Fi(-c,0),直线/的斜率定存在,设其方程为y=A(x+c),则M(0,品),YM为线段PFI的中点,J点尸(c,2kc),222将其代入双曲线C的方程,有J_4kC,2,2l一ab,;而=2而,点N(2匚kc且点N在渐近线尸巨丫上,33a2联立,消去k得,空,a29,离心率e=q=5,a3故选:B.2. (2020绥化模拟)已知对任意正实数?,p,q,有如下结论成立:若典上,则有典上卫E成立,nqnqn+q现已知椭圆三片=1上存在一点P,尸2为其焦点,在47i尸2中,N尸尸1F2=15,NP产2F=75,则椭圆的离心率为()A.AB.返C.返D.返2
3、232【分析】结合正弦定理和题中的新定义可知,IPFJ+PF2JFIFml,从而sinl50+sin75sin90j-=_竺一,结合正弦的两角和差公式分别算出sinl5o和sin750,代入上式进行sinl5+sin75sin90化简即可得离心率的值.【解答】解:在4PFF2中,由正弦定理知,IPFll Ipf2I f1f2SinZPF2F1 %inZPF1F2 %inZF1PF2IPFll+PF2FF2Sinl50+sin750sin900所以-2a2c即&=_居幽_sinl5+sin75sin90asinl5+sin75sin 15o +sin75o =sinI5o +cos 150=2s
4、in (45o +15o )=零所以离心率e=q=g=返.a63故选:C.2v23. (2020春杭州期末)以双曲线C-=l(0,b0)的左顶点A为圆心作半径为的圆,此2,2ab圆与渐近线交于坐标原点。及另点8,且存在直线y=h使得8点和右焦点尸关于此直线对称,则双曲线的离心率为()A.骼B.2C.3D.3【分析】利用已知条件求出8的坐标,结合B与尸关于y=丘对称,得到小。的方程,然后求解离心率即可.【解答】解:由题意可知A(0),F(c,0),22以双曲线C2-%=l(0,bO)的左顶点A为圆心作半径为”的圆(x+)2+v2=2,此圆与a2b2_b1y三X渐近线),=-2X交于坐标原点。及另
5、一点8,可得a,消去y,a(x+a)2+y2=a2232可得/+2x+-2=o,所以8=12a,则用=?-b.存在直线y=h使得B点和右焦点尸关于此直线对称,2a?bIC2o3,3132,可得:心=J,可得=2a:C,8尸的中点为:(C二,。),koa3o2,222_za2ab乙CC2cc2333中点在直线y=心;上,可得昌b=2a+。(.二_),2o2.92c2ab乙C整理可得4%2=(2a3+c3)Cc3-2a3),把2=c2-W代入上式.化简可得44=c4,e=La解得e=2故选:B.2v24.(2020浙江学业考试)设Fi,尸2分别是双曲线三4=l(,b0)的左、右焦点.若双曲线上存a
6、2b2在一点P,使得IPaI=4P尸2|,且NAPF2=60,则该双曲线的离心率是()A.逗B.运C.&D.&5353【分析】由双曲线的定义及题意可得仍户,俨心|的值,再由余弦定的可得mc的关系,进而求出双曲线的离心率.【解答】解:由双曲线的定义可得IPFILIP尸2=24,而IPg|=4|尸尺|,所以IPFlI=&,|尸乃|=2小33在APFIF2中/尸PF2=6O,由余弦定理可得IFI尸22=4c2=p产2+pF22-2IPFlIlPF2cosNFPF2=越9/人4/o8a2a1_52293329_整理可得:4c2=四/,即/=23/,所以e=_=Y亘,99a3故选:B.5. (2020南
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 54 圆锥曲线 综合 应用 证明 探究性 问题 达标 检测 教师版