3幂零矩阵的Jordan 标准型高等代数毕业论文.doc
《3幂零矩阵的Jordan 标准型高等代数毕业论文.doc》由会员分享,可在线阅读,更多相关《3幂零矩阵的Jordan 标准型高等代数毕业论文.doc(21页珍藏版)》请在第壹文秘上搜索。
1、3-幂零矩阵的Jordan 标准型 摘要:本文主要对2-幂零矩阵,3-幂零矩阵的Jordan标准型进行探讨,对2-幂零矩阵,给出了2-幂零矩阵的Jordan标准型的形式,并指出若固定秩,则有唯一的Jordan标准型,对n阶3-幂零矩阵,文中推导出其秩的范围和其Jordan标准型的个数,并给予证明,若其秩为一固定值,文中推导出了它的Jordan标准型的个数,并给予证明。关键词:k-幂零矩阵征值;2-幂零矩阵;3-幂零矩阵;若当形矩阵;Jordan标准型;特征多项式;特征根;初等因子;秩0、引言定义1:设(表示复数域C上全体矩阵),若存在正整数k,使得,则称A是幂零指数为k的幂零矩阵记为k-幂零矩
2、阵特别地,当k=2时,即矩阵A满足,称A为2-幂零矩阵当k=3时,即矩阵A满足,称A为3-幂零矩阵。定义2:形式为的矩阵称为J块,其中是复数,由若干个若当块组成的准对角矩阵称为若当形矩阵。定义3:每个阶的复数矩阵A都与一个若当形矩阵相似,这个若当形矩阵除去其中若当块的排列次序外是被矩阵A唯一决定的,它称为A的Jordan标准型。目前关于幂零矩阵的Jordan标准型,仅有文1的关于2-幂零矩阵的研究探讨,有以下三个性质:性质1:当k=2即复数域C上的n阶2-幂零矩阵A的Jordan标准型为,其中(),且至少存在一个j,使即至少存在一个性质2:设C是复数域,而A是C上2-幂零矩阵,设A的秩为r,则
3、,而A的Jordan标准型为,其中对角线上有r个。性质3:两个2-幂零矩阵相似的充要条件是它们的秩相同。1、引理引理1.1:A为幂零矩阵的充要条件是A的特征值全为0。 证明:可见文2引理1.2:设,则,而。引理1.3:复数域C上的k-幂零矩阵A的标准型具有形式,其中(),且至少存在一个若当块,使。证明:因为A为幂零矩阵,故A的特征值全为0,于是A的特征多项式为。设幂零矩阵的A的初等因子为可能相同,且),每一个初等因子对应一个J块(),这些J块构成一个若当形矩阵因为A为k-幂零矩阵,所以J中存在即至少存在一个j,使即命题成立。由引理1.3,易证得关于2-幂零矩阵的那三个性质是成立的2、主要结果及
4、证明由引理1.3我们知道n阶k-幂零矩阵A的Jordan标准型为,其中(),且至少存在一个j,使当k=2,由推论3,任一个2-幂零矩阵,若它的秩确定,则它有唯一的一种Jordan标准型。那么对于k ,(k为大于2的正整数)任一个k-幂零矩阵,若它的秩固定,它是否也有唯一的Jordan标准型,若不唯一,它又含有多少种的Jordan标准型?下面我们对3-幂零矩阵进行探讨:设A为n 阶3-幂零矩阵,由引理1.3知A的Jordan标准型为,(),且,至少存在一个j,使 不妨设,则下面我们对讨论的值的情况()及所对应的A的秩r(下面括号里的数表示秩的大小)n=3n=4n=5n=6n=7n=83=3(2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3幂零矩阵的Jordan 标准型 高等代数毕业论文 矩阵 Jordan 高等 代数 毕业论文