盾构施工测量培训.ppt
《盾构施工测量培训.ppt》由会员分享,可在线阅读,更多相关《盾构施工测量培训.ppt(41页珍藏版)》请在第壹文秘上搜索。
1、盾构施工测量培训1控制测量1.1平面控制测量:1.1.1平面控制测量概述:地铁施工领域里平面控制网分两级布设,首级为GPS控制网,二级为精密导线网。施工前业主会提供一定数量的GPS点和精密导线点以满足施工单位的需要。施工单位需要做的是在业主给定的平面控制点上加密地面精密导线点,然后是为了向洞内投点定向而做联系测量,最后是在洞内为了保证隧道的掘进而做施工控制导线测量。不管是地面精密导线还是洞内施工控制导线都是精密导线测量,虽然边长不满足四等导线的要求,但是基本上是采用四等导线的技术要求施测,其中具体技术要求在铁路工程测量规范、城市轨道交通工程测量规范都有规定。1.1.2地面平面控制测量:在业主交
2、接桩后,施工单位要马上对所交桩位进行复测。业主交桩数量有限,不一定能很好地满足施工的需要,所以经常要在业主所交桩的基础上加密精密导线点,以方便施工。特别是在始发井附近,一定要保证有足够数量的控制点,不少于个。其具体技术要求在铁路工程测量规范、城市轨道交通工程测量规范都有规定。1.1.3 洞内平面控制测量 洞内施工控制导线一般采用支导线的形式向里传递。但是支导线没有检核条件,很容易出错,所以最好采用双支导线的形式向前传递。然后在双支导线的前面连接起来,构成附合导线的形式,以便平差测量精度。洞内施工控制导线一般采用在管片最大跨度附近安装牵制对中托架,测量起来非常方便,且可以提高对中精度,还不影响洞
3、内运输。强制对中托架尺寸形状要控制好,以便可以直接安装在管片的螺栓上面,不需要电钻打眼安装。由于盾构施工一般都是双线隧道错开50环左右掘进,如果错开环数很大,后面掘进的盾构机由于推力很大,会对前面另一个洞的导线点产生影响。特别是在左右线间距较小岩层很软时,影响很大,很容易导致测量出大错。还有就是如果在曲线隧道里,管片上的导线点间的边角关系经常受盾构机的推力和地质条件的影响,所以要经常复测。1.2 高程控制测量:1.2.1高程控制测量概述:高程控制测量主要包括地面精密水准测量和高程传递测量及洞内精密水准测量,在东莞地铁领域里的精密水准测量也就是城市二等水准测量。不管是地面还是洞内都采用的是城市二
4、等水准测量。其技术要求在铁路工程测量规范、城市轨道交通工程测量规范都有规定。L1.2.2 地面高程控制测量1.2.3洞内高程控制测量 地面水准测量按城市二等水准的要求施测。洞内由于光线不足,二等水准施测时相对麻烦,利用手电和电子水准仪相结合进行施测。水准线路往返较差、附合或闭合差为8 mm。水准测量应在隧道贯通前进行三次,并应与传递高程测量同步进行。1.3 联系测量1.3.1 定向测量 地铁施工规定,在任何贯通面上,地下测量控制网的贯通中误差,横向不超过,竖向不超过。联系测量主要有一井定向(联系三角形定向)、两井定向、陀螺仪联合定向、导线定向四中方式,其中我们施工单位一般都没有陀螺仪,超过1.
5、6km的隧道要加陀螺仪定向,所以很少采用陀螺仪联合定向。用导线定向精度最好且最方便,但是用导线定向受始发井的长度和深度制约,一般也很少用。所以一般都采用一井定向(联系三角形定向)或两井定向,其中用两井定向受地面及洞内各种因素的制约要少,很方便,一井定向(联系三角形定向)对场地要求较高,做起来也很麻烦,但是定向精度很有保证。联系测量向洞内投点时把点间距尽量拉大些,在始发井底板,最好投四个点,保证始发井两端都各有两个控制点。且尽量保证每次联系测量投点时都投在这四个点上。以便取多次联系测量的加权平均值做为最终的始发控制点坐标。定向示意图 一井定向定向示意图 二井定向1.3.2 高程传递测量 向洞内传
6、递高程一般采用悬挂钢尺的方法,一定要注意加温度和尺长改正,才能保证导入井下的水准点的精度。如果有斜井或通道,也可以用水准测量的方法向井下传递高程。如果全站仪的仰俯角不大的话还可以直接用全站仪三角高程测高差的办法传递高程。2导向系统:2.1导向系统应用2.1.1 始发托架和反力架定位 盾构机初始状态主要决定于始发托架和反力架的安装,因此始发托架的定位在整个盾构施工测量过程中显得格外重要。盾构机在曲线段始发方式通常有两种:切线始发和割线始发,两种始发方式示意图见下图 始发托架的高程要比设计提高约15,以消除盾构机入洞后“栽头”的影响。反力架的安装位置由始发托架来决定,反力架的支撑面要与隧道的中心轴
7、线的法线平行,其倾角要与线路坡度保持一致。2.2导向系统介绍2.2.1VMT导向系统概述:在掘进隧道的过程中,为了避免隧道掘进机(TBM)发生意外的运动及方向的突然改变,必须对TBM的位置和DTA(隧道设计轴线)的相对位置关系进行持续地监控测量。TBM能够按照设计路线精确地掘进,则对掘进各个方面都有好处(计划更精确,施工质量更高)。这就是TBM采用“导向系统”(SLS)的原因。德国VMT公司的SLS-T系统就是为此而开发,该系统为使TBM沿设计轴线(理论轴线)掘进提供所有重要的数据信息。SLS-T系统功能完美,操作简单。2.2.2导向系统基本组成与功能 导向系统是由激光全站仪(TCA)、中央控
8、制箱、ESL靶、黄盒子和计算机及掘进软件组成。其组成见下图:2.2.2.1全站仪(TCA)具有伺服马达,可以自动照准目标和跟踪,并可发射激光束,主要用于后视定向,测量距离、水平角和竖直角,并将测量结果传输到计算机。2.2.2.2ESL靶 也称激光靶,是一台智能性的传感器。ELS接收全站仪发射的激光束,测定水平和垂直方向的入射点。偏角由ELS上激光的入射角确认,坡度由该系统内的倾斜仪测量。ELS在盾构机体上的位置是确定的,即对TBM坐标系的位置是确定的。2.2.2.3中央控制箱 主要的接口箱,数据交换中心。它为黄盒子(继而为激光全站仪)及ELS靶提供电源。2.2.2.4黄盒子 它主要为全站仪供电
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 盾构 施工 测量 培训