城市规划系统工程学空间统计分析初步教学PPT.ppt
《城市规划系统工程学空间统计分析初步教学PPT.ppt》由会员分享,可在线阅读,更多相关《城市规划系统工程学空间统计分析初步教学PPT.ppt(76页珍藏版)》请在第壹文秘上搜索。
1、第十五章第十五章 空间统计分析初空间统计分析初步步 探索性空间统计分析 地统计分析方法 空间统计分析空间统计分析,即空间数据(Spatial Data)的统计分析,是现代计量地理学中一个快速发展的方向领域。空间统计分析,其核心就是认识与地理位置相关的数据间的空间依赖、空间关联或空间自相关,通过空间位置建立数据间的统计关系。第1节 探索性空间统计分析 一、基本原理与方法 (一)空间权重矩阵 (二)全局空间自相关 (三)局部空间自相关 二、应用实例 一、基本原理与方法 通常定义一个二元对称空间权重矩阵,来表达个位置的空间区域的邻近关系,其形式如下:式中:Wij表示区域i与j的临近关系,它可以根据邻
2、接标准或距离标准来度量。(一)空间权重矩阵 nnnnnnwwwwwwwwwW212222111211两种最常用的确定空间权重矩阵的规则:(1)简单的二进制邻接矩阵(2)基于距离的二进制空间权重矩阵 其它相邻接和当区域01jiwij其它时的距离小于和当区域01djiwij(二)全局空间自相关 Moran指数和Geary系数是两个用来度量空间自相关的全局指标。Moran指数反映的是空间邻接或空间邻近的区域单元属性值的相似程度,Geary 系数与Moran指数存在负相关关系。如果是位置(区域)的观测值,则该变量的全局Moran指数I,用如下公式计算:式中:I为Moran指数 ninjniiijnin
3、jjiijxxwxxxxwnI111211ninijijninijjiijwSxxxxw121)(22)(1iixxnSniixnx11 Geary 系数C计算公式如下:式中:C为Geary系数;其它变量同上式。如果引入记号:ninjniiijninjjiijxxwxxwnC111211221ninjijwS110)(xxzii)(xxzjj,21nTzzzz则全局Moran指数I的计算公式也可以进一步写成:Moran指数I的取值一般在-1-1之间,小于0表示负相关,等于0表示不相关,大于0表示正相关;Geary系数C的取值一般在0-2之间,大于1表示负相关,等于1表示不相关,而小于1表示正相
4、关。niininjjiijxxxxxxwSnI12110)()(zzWzzSnzzzwSnTTniininjjiij012110对于Moran指数,可以用标准化统计量Z来检验n个区域是否存在空间自相关关系,Z的计算公式为:当Z值为正且显著时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)趋于空间集聚;当Z值为负且显著时,表明存在负的空间自相关,相似的观测值趋于分散分布;当Z值为零时,观测值呈独立随机分布。)()(IVARIEIZ(三)局部空间自相关 局部空间自相关分析方法包括三种分析方法:1.空间联系的局部指标(LISA)2.G统计量 3.Moran散点图 1.空间联系的局部指标(
5、LISA)空间联系的局部指标(Local indicators of spatial association,缩写为LISA)满足下列两个条件:(1)每个区域单元的LISA,是描述该区域单元周围显著的相似值区域单元之间空间集聚程度的指标;(2)所有区域单元LISA的总和与全局的空间联系指标成比例。LISA包括局部Moran指数(Local Moran)和局部Geary指数(Local Geary),下面重点介绍和讨论局部Moran指数。局部Moran指数被定义为:式中:其中 和 是经过标准差标准化的观测值。局部Moran指数检验的标准化统计量为:jjijiixxwSxxI)()(2iijjij
6、iixxxxwxxnI2)()()(jjijiTjjijizwzzzzwnzizjz)()()(iiiiIVARIEIIZ2.G统计量 全局G统计量的计算公式为:对每一个区域单元的统计量为:ijijjijiijxxxxwG/ijjjijixxwG/对统计量的检验与局部Moran指数相似,其检验值为:显著的正值表示在该区域单元周围,高观测值的区域单元趋于空间集聚,而显著的负值表示低观测值的区域单元趋于空间集聚与Moran指数只能发现相似值(正关联)或非相似性观测值(负关联)的空间集聚模式相比,具有能够探测出区域单元属于高值集聚还是低值集聚的空间分布模式。)()()(iiiiGVARGEGGZ3.
7、Moran散点图 以(Wz,z)为坐标点的Moran散点图,常来研究局部的空间不稳定性,它对空间滞后因子Wz和z数据对进行了可视化的二维图示。全局Moran指数,可以看作是Wz对于z的线性回归系数,对界外值以及对Moran指数具有强烈影响的区域单元,可通过标准回归来诊断出。由于数据对(Wz,z)经过了标准化,因此界外值可易由2sigma规则可视化地识别出来。Moran散点图的四个象限,分别对应于区域单元与其邻居之间四种类型的局部空间联系形式:第一象限代表了高观测值的区域单元被同是高值的区域所包围的空间联系形式;第二象限代表了低观测值的区域单元被高值的区域所包围的空间联系形式;第三象限代表了低观
8、测值的区域单元被同是低值的区域所包围的空间联系形式;第四象限代表了高观测值的区域单元被低值的区域所包围的空间联系形式。与局部Moran指数相比,其重要的优势在于能够进一步具体区分区域单元和其邻居之间属于高值和高值、低值和低值、高值和低值、低值和高值之中的哪种空间联系形式。并且,对应于Moran散点图的不同象限,可识别出空间分布中存在着哪几种不同的实体。将Moran散点图与LISA显著性水平相结合,也可以得到所谓的“Moran显著性水平图”,图中显示出显著的LISA区域,并分别标识出对应于Moran散点图中不同象限的相应区域。二、应用实例二、应用实例 中国大陆各省份人均GDP的空间关联分析根据各
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 城市规划 系统 工程学 空间 统计分析 初步 教学 PPT