沪科版八年级上册《轴对称图形与等腰三角形》单元作业设计 (优质案例40页).docx
《沪科版八年级上册《轴对称图形与等腰三角形》单元作业设计 (优质案例40页).docx》由会员分享,可在线阅读,更多相关《沪科版八年级上册《轴对称图形与等腰三角形》单元作业设计 (优质案例40页).docx(40页珍藏版)》请在第壹文秘上搜索。
1、沪科版八年级上册轴对称图形与等腰三角形单元作业设计一、单元信息基本信息学科年级学期教材版本单元名称数学八年级第一学期沪科版轴对称图形与等腰三角形单元组织方式6自然单元口重组单元课时信息序号课时名称对应教材内容1轴对称图形和轴对称15.KPl18-120)2轴对称的性质与作图15.l(P120-122)3线段的垂直平分线的性质15.2(P128-129)4线段的垂直平分线的判定15.2(P129-132)5等腰三角形的性质15.3(P132-135)6等腰三角形的判定15.3(P135-140)7角的平分线的性质15.4(P141-144)8角的平分线的判定15.4(P144-145)二、单元分
2、析(一)课标要求1.轴对称图形(1)通过具体实例理解轴对称的概念,探索它的基本性质:成轴对称的两个图形中对应点的连线被对称轴垂直平分.(2)能画出简单平面图形(点、线段、直线、三角形等)关于给定对称轴的对称图形.(3)理解轴对称图形概念;探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质.(4)认识并欣赏自然界和现实生活中的轴对称图形.(5)运用图形的轴对称进行图案设计2 .线段的垂直平分线(1)理解线段垂直平分线的概念.(2)探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上.3 .等腰三角形(1)理解等腰三角形的
3、概念,探索并证明等腰三角形的性质定理:等腰三角形的两个底角相等;底边上的高线、中线及顶角平分线重合.(2)探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形.探索等边三角形的性质定理:等边三角形的各角都等于60.(3)探索等边三角形的判定定理:三个角都相等的三角形(或有一个角是60的等腰三角形)是等边三角形.4 .角的平分线(1)理解角平分线的概念.(2)探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上.(二)教材分析1 .知识网络三tlMBW=a6-B6宏病S育率ftOFievaw理三醐tiS-看(SX1%电H0M
4、则称圉阶性展轴对称图形与等腰三角形2 .内容分析轴对称图形与等腰三角形是课标(2022年版)“图形与几何”部分的内容.本章主要内容分为四部分:轴对称图形,线段的垂直平分线,等腰三角形和角的平分线.线段的垂直平分线,等腰三角形和角的平分线都可以看作轴对称图形的特例,而轴对称图形与等腰三角形又为本章的重点,对今后的学习有着至关重要的作用.通过本章的学习让学生了解轴对称现象的数学本质,进而研究线段的垂直平分线、等腰三角形及角的平分线,体现由一般认识到特殊认识的数学思想.轴对称现象在生活中是很常见的,轴对称是一种最基本的图形变换,是学生学习空间与图形的必要基础,了解轴对称图形,对于帮助学生建立空间观念
5、,训练初步的审美能力和初步的图案设计操作技能,培养学生的空间想象力都有着不可忽视的作用.线段的垂直平分线的性质定理及逆定理的学习,是安排在对称、命题与定理、三角形全等的判定、逆命题等概念的学习之后,是在学生能够使用逻辑推理的方法认识几何图形,并能解决问题后,利用尺规作图得到线段的垂直平分线,线段的垂直平分线的作法的合理性和正确性进一步得到加深和巩固,使学生体会逻辑推理的方法,探索图形的属性.等腰三角形是最常见的图形,赋予它一些特殊的性质,因而在生活中被广泛应用.等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一.等腰
6、三角形沿底边上的高对折是今后论证两条线段相等及线段垂直的重要依据.等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合的性质以及等边三角形的概念及性质在以后的几何证明问题中都会发挥很重要的作用.角的平分线的尺规作图法渗透了轴对称、三角形全等等内容,在此基础上接着学习了过一点作已知直线垂线的尺规作法,它们是几何的基本作图,也是今后进一步学习、研究几何知识的重要基础.本章所研究的轴对称变换是基本的几何变换,线段的垂直平分线、角的平分线和等腰三角形,是基本的几何图形,它们的性质与判定不仅可以直接用来解决实际问题,而且对今后继续学习几何知识具有十分重要的意义.本章的后面三节内容:线段的垂直平分线、
7、等腰三角形、角的平分线的研究和学习,都是以第一节轴对称图形为基础,围绕图形的轴对称性的研究展开的.线段的垂直平分线、角的平分线、等腰三角形的性质和判定是证明线段和角相等的重要依据,应用十分广泛.本章在知识结构上,遵循几何研究的一般路径:定义-性质-判定-应用,性质和判定互逆;在研究方法上,让学生经历:观察-实验-猜想-证明的过程;在命题的探索和证明过程中,也蕴含着一些数学思想方法,如转化的思想方法(如证明同一个三角形中的角相等可以转化为证明这两个角所对的边相等等)、类比的思想方法(如类比等腰三角形性质得到等边三角形性质等)、还有归纳的思想方法(一点关于X轴、y轴对称的点的坐标规律).通过本单元
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴对称图形与等腰三角形 沪科版八年级上册轴对称图形与等腰三角形单元作业设计 优质案例40页 沪科版八 年级 上册 轴对称 图形 等腰三角形 单元 作业 设计 优质 案例 40