2024正交圆锥曲线的交点特性及相关的角度范围问题.docx
《2024正交圆锥曲线的交点特性及相关的角度范围问题.docx》由会员分享,可在线阅读,更多相关《2024正交圆锥曲线的交点特性及相关的角度范围问题.docx(11页珍藏版)》请在第壹文秘上搜索。
1、正交圆锥曲线的交点特性及相关的角度范围问题任意圆锥曲线的交点问题实质都是四次方程解的问题,通常较为复杂。但是对于正交的圆锥曲线的交点特性,我们却可以得到一些好的几何特性,并加以利用。本文意在利用圆锥曲线系的解析方法得到正交圆锥曲线交点的一个重要性质,并且利用这一性质分析圆锥曲线中任意弦所对角的取值范围。我们先看一个常规问题:问题1:椭圆W+t=上两端点A(-5,0)B(5,0),5一4在椭圆上求一点P,使得NAPB最大。方法1:常规解析法,可以设P的参数坐标,然后利用两直线的夹角公式以及基本不等式的方法求出P点就在短轴顶点。方法2:可以设想过AB的圆,当圆与椭圆相切时,显然切点就是我们要找的P
2、点。此法优点在于简结,但是有个缺陷,因为我们可以说圆与椭圆相切于椭圆对称的两侧而非短轴顶点(虽然实际并非如此)。另外,如果A,B两点是椭圆上的任意点,以上的方法1就比较繁琐,方法2虽然依旧得到过AB的圆与椭圆的切点即为所求的简洁结论,但是除了仍然面临上文的那条缺陷外,具体求P点也成为问题。利用本文得到的关于正交圆锥曲线交点的一个重要性质可以完善方法2,更为本质的认识这类问题。一、准备工作1、正交的定义:若平面上两条曲线都是轴对称图形,并且这两条曲线存在相互垂直的对称轴,则称这两条曲线相互正交。显然圆与所有圆锥曲线都正交。我们这里将对称轴垂直坐标轴的圆锥曲线称为标准圆锥曲线。所以标准圆锥曲线都不
3、含交叉项。2、两圆锥曲线相切的定义:两条圆锥曲线C1、C2有公共点P,且过P点C1、C2有同一条切线,则称这两条圆锥曲线相切于P点。P称为C1,C2的切点。直观上,我们设想C1、C2原来相交于A,B两点,当我们适当移动C1,C2中的一条或两条,使得AB越来越接近,最终重合与P,根据切线的定义,割线AB最终同时成为C1,C2的过P的切线。这样C1,C2就相切于P点。所以,从方程解的角度看,AB本来是C1,C2联列得到的四次实系数方程的两个相异实根,而当他们重合于P后,就成为重根。即切点就是实重根点,对应两实数解。3、圆锥曲线交点、切点的个数:引理:任意两条圆锥曲线最多有4个不同的公共点,并且只有
4、以下几种情况:(1)若共有4个不同的公共点,则其中不存在两曲线的切点。(2)若共有3个不同的公共点,则其中有且只有1个是切点。(3)若共有2个不同的公共点,则这两个点要么都是个切点,要么都不是。(4)若共有1个公共点,则这个点必是切点。(5)没有公共点。证明:根据代数基本定理,C1,C2联列得到的四次实系数方程在复数域内有且只有4个根,其中实根和虚根都是成对出现。所以根的所有情况是:I4个相异实根,对应上文的(1)Il4个实根,其中两个相等,另外两个不等。对应(2)III 4个实根,两两相等对应(3)中的两个切点。IV 2个相异实根,2个虚根,对应(3)中的都不是切点的情况。V 2个相等的实根
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 正交 圆锥曲线 交点 特性 相关 角度 范围 问题
