欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    matlab遗传算法实例 .docx

    • 资源ID:1027486       资源大小:21.32KB        全文页数:10页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    matlab遗传算法实例 .docx

    matlab遗传算法实例%卜.面举例说明遗传算法%求下列函数的最大值%f(x)=10*sin(5x)+7*cos(4x)x0,10%将X的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)(210-1)0.01o%将变量域0,10离散化为二值域0,1023,x=0+10*b1023,其中b是0,1023中的一个二值数。%编程%2.1初始化(编码)%initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,Chromlength表示染色体的长度(二值数的长度),%长度大小取决于变量的二进制编码的长度(在本例中取10位)。%遗传算法子程序%Name:initpop.m%初始化functionpop=initpop(popsize,Chromlength)pop=round(rand(popsize,Chromlength);%rand随机产生每个单元为0,1行数为popsize,列数为Chromlength的矩阵,%roud时矩阵的每个单元进行圆整。这样产生的初始种群。%2.2计算目标函数值%2.2.1将二进制数转化为卜进制数(1)%遗传算法子程序%Name:decodebinary,m%产生2n2(-1).1的行向量,然后求和,将二进制转化为十进制functionpop2=decodebinary(pop)p×,py=size(pop);%求POP行和列数fori=1:pypop1(:,i)=2.A(py-i).*pop(:,i);endpop2=sum(pop1,2);%求PoPl的每行之和%2.2.2将二进制编码转化为卜进制数(2)%decodechrom.m函数的功能是将奥色体(或二进制编码)转换为卜进制,参数spoint表示待解码的二进制串的起始位置%(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),%参数Iength表示所截取的长度(本例为10)。%遗传算法子程序%Name:decodechrom.m%将二进制编码转换成卜进制functionpop2=decodechrom(pop,spoint,length)pop1=pop(:,spoint:spoint+length-1);pop2=decodebinary(pop1);%2.2.3计算目标函数值%calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。%遗传算法子程序%Name:calobjvalue.m%实现目标函数的计算functionobjvalue=calobjvalue(pop)tempi=decodechrom(pop,1,10);%将PoP每行转化成卜进制数x=temp1*10/1023;%将二值域中的数转化为变量域的数objvalue=10*sin(5*x)+7*cos(4*x);%计算I-I标函数值%2.3计算个体的适应值%遗传算法子程序%Name:calfitvalue.m%计算个体的适应值functionIitvalue=CalfitvaIue(ObjvaIue)globalCmin;Cmin=O;p×,py=size(objvalue);fori=1:pxifobjvalue(i)+Cmin>0temp=Cmin+objvalue(i);elsetemp=0.0;endfitvalue(i)=temp;endfitvalue=fitvalue,;%2.4选择第制%选择或复制操作是决定哪些个体可以进入卜.一代。程序中采用赌轮盘选择法选择,这种方法较易实现。%根据方程pi=fi0i=fifsum,选择步骤:%1)在第t代,由(1)式计算fsum和Pi%2)产生0,1的随机数rand(.),求s=rand(.)*fsum%3)求fis中最小的k,则第k个个体被选中%4)进行N次2)、3)操作,得到N个个体,成为第t=t+1代种群%遗传算法子程序%Name:selection.m%选择复制functionnewpop=selection(pop1fitvalue)totalfit=sum(fitvalue);%求适应值之和fitvalue=fitvaluetotalfit;%单个个体被选择的概率fitvalue=cumsum(fitvalue);%0fitvalue=1234,则cumsum(fitvalue)=13610p×,py=size(pop);ms=sort(rand(px,1);%从小到大排列fitin=1;newin=1;whilenewin<=pxif(ms(newin)<fitvalue(fitin)newpop(newin)=pop(fitin);newin=newin+1;elsefitin=fitin+1;endend%2.5交叉%交叉(CrOSSoVer),群体中的每个个体之间都以一定的概率PC交叉,即两个个体从各自字符串的某一位置%(一般是随机确定)开始互相交换,这类似生物进化过程中的基因分裂与重组。例如,假设2个父代个体x1,x2为:%x1=0100110%x2=1010001%从每个个体的第3位开始交叉,交又后得到2个新的子代个体y1,y2分别为:%y1=0100001%y2=1010110%这样2个子代个体就分别具有了2个父代个体的某些特征。利用交又我们有可能由父代个体在子代组合成具有更高适合度的个体。%事实上交又是遗传算法区别于其它传统优化方法的主要特点之一。%遗传算法子程序%Name:crossover,m%交叉functionnewpop=crossover(pop1pc)px,py=size(pop);newpop=ones(size(pop);fori=1:2:px-1if(rand<pc)cpoint=round(rand*py);newpop(i)=pop(i,1xpoint),pop(i+11cpoint+1:py);newpop(i+1,:)=pop(i+1,1xpoint),pop(i,cpoint+1:py);elsenewpop(i,:)=pop(i);newpop(i+1,:)=pop(i+1);endend%2.6变异%变异(mutation),基因的突变普遍存在于生物的进化过程中。变异是指父代中的每个个体的每一位都以概率pm翻转,即由T变为“0”,%或由"0"变为“1”。遗传算法的变异特性可以使求解过程随机地搜索到解可能存在的整个空间,因此可以在一定程度上求得全局最优解。%遗传算法子程序%Name:mutation.m%变异functionnewpop=mutation(pop,pm)p×,py=size(pop);newpop=ones(size(pop);fori=1:pxif(rand<pm)mpoint=round(rand*py);ifmpoint<=0mpoint=1;endnewpop(i)=pop(i);ifany(newpop(i,mpoint)=0newpop(i,mpoint)=1;elsenewpop(i,mpoint)=0;endelsenewpop(i)=pop(i);endend%2.7求出群体中最大得适应值及其个体%遗传算法子程序%Name:best.m%求出群体中适应值最大的值functionbestindividual,bestfit=best(pop,fitvalue)p×,py=size(pop);bestindividual=pop(1bestfit=fitvalue(1);fori=2:pxiffitvalue(i)>bestfitbestindividual=pop(i,:);bestfit=fitvalue(i);endend%2.8主程序%遗传算法主程序%Name:genmainO5.mclearclfpopsize=20;%群体大小ChrOmIength=I0;%字符串长度(个体长度)pc=0.6;%交叉概率Pm=O.001;%变异概率pop=initpop(popsize,Chromlength);%随机产生初始群体fori=1:20%20为迭代次数Objvaluej=CalobjvaIue(POp);%计算目标函数fitvalue=calfitvalue(objvalue);%计算群体中每个个体的适应度newpop=selection(pop,Iitvalue);%复制newpop=crossover(pop,pc);%交叉newpop=mutation(pop,pc);%变异bestindividual,bestfit=best(pop,fitvalue);%求出群体中适应值最大的个体及其适应值y(i)=max(bestfit);n(i)=hpop5=bestindividual;x(i)=decodechrom(pop5,1,chromlength)*101023;pop=newpop;endfplot(,10*sin(5)+7*cos(4*x),010)holdonplot(x,y,r*')holdoffzindex=max(y);%计算最大值及其位置x5=x(index)%计算最大值对应的X值y=z【问题】求f(x)=x10*sin(5x)7*cos(4x)的最大值,其中0<=x<=9【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08【程序清单】%编写目标函数function(sol,eval=fitness(sol,options)x=sol(1);eval=x10*sin(5*×)7*cos(4*x);%把上述函数存储为fitness.m文件并放在工作目录下initPop=initializega(10,09MtneSS');%生成初始种群,大小为10xendPop,bPop,trace=ga(09,'fitness',initPop,1e-611,maxGenTerm',25,normGeomSelect",.0.08,CarithXover',2,'nonnifMutation,2253)%25次遗传迭代运算借过为:X=7.856224.8553(当X为7.8562时,f(X)取最大值24.8553)注:遗传算法一般用来取得近似最优解,而不是最优解。遗传算法实例2【问题】在一5<=Xi<=5,i=1,2区间内,求解f(×1,×2)=-20*exp(-0.2*sqrt(0.5*(×1.

    注意事项

    本文(matlab遗传算法实例 .docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开