欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    Markov-chains-马尔科夫链.docx

    • 资源ID:1058759       资源大小:150.30KB        全文页数:56页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Markov-chains-马尔科夫链.docx

    MarkovChains4.1 INTRODUCTIONANDEXAMP1.ESConsiderastochasticprocessXn,n=0,1,2,.thattakesonafiniteorcountablenumberofpossiblevalues.Unlessotherwisementioned,thissetofpossiblewillbedenotedbythesetofnonnegativeintegers0,1,2,.IfX,=i,thentheprocessissaidtobeinstateiattimen.Wesupposethatwhenevertheprocessisinstatei,thereisafixedprobabilityP11thatitwillnextbeinstatej.Thatis,wesupposethat0PX"1=jXnl=i|iXl=iJ.X=i=Pijforallstatesi0,i,.in-,i,jandalln20.SuchastochasticprocessisknownasaMarkovchain.Equation()maybeinterpretedasstatingthat,foraMarkovchain,theconditionaldistributionofanyfuturestateX11.1giventhepaststatesXo,X.,Xll-andthepresentstateX11zisindependentofthepaststatesanddependsonlyonthepresentstate.ThisiscalledtheMarkovianproperty.Theva1uePiJrepresentstheprobabilitythattheprocesswill,wheninstatei,nextmakeatransitionintostatej.Sinceprobabilitiesarenonnegativeandsincetheprocessmustmakeatransitionintosomestate,WehavethataPi声O,i,j2O:Z4=l,i=o,1/?./.:1.etPdenotethematrixofonc-steptransitionprobabilitiesPij,sothat%0-%,1*EXAMP1.E4.1(八)TheM/G/lQueue.SupposethatcustomersarriveataservicecenterinaccordancewithaPoissonprocesswithrate.Thereisasingleserverandthosearrivalsfindingtheserverfreegoimmediatelyintoservice;allotherswaitinlineuntiltheirserviceturn.TheservicetimesofsuccessivecustomersareassumedtobeindependentrandomvariableshavingacommondistributionG:andtheyarealsoassumedtobeindependentofthearrivalprocess.TheabovesystemiscalledtheM/G/lqueueingsystem.TheletterMstandsforthefactthattheinterarrivaldistributionofcustomersisexponential,Gfortheservicedistribution;thenumber1indicatesthatthereisasingleserver.IfweletX(t)denotethenumberofcustomersinthesystematt,then;.X(t)11>0wouldnotpossesstheMarkovianpropertythattheconditionaldistributionofthefuturedependsonyonthepresentandnotonthepast.Forifweknowthenumberinthesystemattimet,then,topredictfuturebehavior,whereaswewouldnotcarehowmuchtimehadelapsedsincethelastarrival(sincethearrivalprocessismemory1ess),wewouldcarehowlongthepersoninservicehadalreadybeenthere(sincetheservicedistributionGisarbitraryandthereforenotmemoryless).Asameansofgettingaroundtheabovedi1emmaletusonlylookatthesystematmomentswhencustomersdepart.Thatis,letXndenotethenumberofcustomersleftbehindbythenthdeparture,n1.Also,letYndenotethenumberofcustomersarrivingduringtheserviceperiodofthe(n+l)stcustomer.WhenXn>0,thenthdepartureleavesbehindXncustomers-ofwhichoneentersserviceandtheotherXn-Iwaitinline.Hence,atthenextdeparturethesystemwillcontaintheXn-Icustomersthatwereinlineinadditiontoanyarrivalsduringtheservicetimeofthe(n+l)stcustomer.SinceasimiIarargumentholdswhenX,=0,WeseethatO)U=X.T+ZM'>°1匕if×,=0SinceYh,nN1,representthenumberofarrivalsinnonoverlappingserviceintervals,itfollows,thearrivalprocessbeingBoissonprocess,thattheyareindependentandOPYn=j=,e'it-dG(x).j=0,1Form(4,1.2)and()tfollowsthatX.n=i,2,.)isaMarkovchainwithtransitionprobabiHtiesgivenbyPll=e山邛dG(x).j0JP,*P11=OotherwiseSupposethatcustomersEXAMP1.E4.1(B)TheM/G/lQueue.arriveatasingle-servercenterinaccordancewithanarbitraryrenewalprocesshavinginterarrivaldistributionG.SupposefurtherthattheservicedistributionisexponentialwithrateKIfweletX11denotethenumberofcustomersinthesystemasseenbythentharrival,itiseasytoseethattheprocessX11,n21isaMarkovchain.TocomputethetransitionprobabilitiesPijforthisMarkovchain,letusfirstnotethat,aslongastherearecustomerstobeserved,thenumberofservicesinanylengthoftimetisaPoissonrandomvariablewithmeant.Thisistruesincethetimebetweensuccessiveservicesisexponentialand,asweknow,thisimpliesthatnumberofservicesthusconstitutesaPoissonprocess.Therefore,P1.i.券dG(r),i0Whichfollowssinceifanarrivalfindsiinthesystem,thenthenextarrivalwi11findi+1minusthenumbersserved,andtheprobabilitythatjwillbeservediseasilyseen(byconditioningonthetimebetweenthesuccessivearrivals)toequaltheright-handsideoftheabove.TheformulaforP10islittledifferent(itistheprobabilitythatatleasti+1PoissoneventsoccurinarandomlengthoftimehavingdistributionG)andthusisgivenbyP-fe-G(O,i0RemarkThereadershouldnotethatintheprevioustwoexamplesWewereabletodiscoveranembeddedMarkowchainbylookingattheprocessonlyatcertaintimepoints,andbychoosingthesetimepointssoastoexploitthelackofmemoryoftheexponentialdistribution.Thisisoftenafruitfulapproachforprocessesinwhichtheexponentialdistributionispresent.EXMP1.E4.1(C)SuasofIndependent,IdenticallyDistributedRandoavariables.TheGeneralRandomWalk.1.etXi,i1,beindependentandidenticallydistributedwithP(Xi=j)=aj,j=0,±1,.IfweletSo=OandS,二£x,r-lThenS11,n0isaMarkovchainforwhichFlj=aj-Sn,n0:iscalledthegeneralrandomwalkandwi11bestudiedinchapter7.EXAMP1.E4.1(D)TheAbsolutevalueoftheSimpleRandcmWallk.TherandomwalkSn,n>l),whereS11=,Xi.issaidtobeasimplerandomWaIkifforsomep,0<p<l,P(X1=I)=P,P(Xi=-l)=q三l-p.Thusinthesimplerandomwalktheprocessalwayseithergoesuponestep(withprobabiIityp)ordownonestep(withprobabi

    注意事项

    本文(Markov-chains-马尔科夫链.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开