欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    matlab四连杆带代码.docx

    • 资源ID:1058810       资源大小:16.74KB        全文页数:10页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    matlab四连杆带代码.docx

    用MalIab对四连杆运动模拟引言四连杆机构因其结构城捷、能够传递动力并有效地实现预定动作,在许多领域得到了广泛应用。进行连杆机构运动分析,传统方法主要是图解法或分析法,无论设计精度还是设计效率都相对低卜.,无法满意现代机械高速高精度的要求。随着计算机技术的飞速发展,特殊是以MAT1.AB为代表的数值计算软件的出现,为进行机构分析供应了有力的工具。1、四连杆介绍1 .K四连杆介绍及分类全部运动副均为转动副的四杆机构称为较链四杆机构,它是平而四杆机构的基本形式,其他四杆机构都可以看成是在它的基础上演化而来的。选定其中一个构件作为机架之后,干脆及机架链接的构件称为连架杆,不干脆及机架连接的构件称为连杆,能够做整周回转的构件被称作曲柄,只能在某一角度范围内往复摇摆的构件称为摇杆。假如以转动副连接的两个构件可以做整周相对转动,则称之为整转副,反之称之为摆转副。较链四杆机构中,根据连架杆是否可以做整圆周转动,可以将其分为三种基木形式,即曲柄摇杆机构,双曲柄机构和双摇杆机构。曲柄摇杆机构,两连架杆中一个为曲柄一个为摇杆的钱链四杆机构。双曲柄机构,具有两个曲柄的钱链四杆机构称为双曲柄机构。其特点是当主动曲柄连续等速转动时,从动曲柄一般做不等速转动。在双曲柄机构中,假如两对边构件长度相等且平行,则成为平行四边形机构。这种机构的传动特点是主动曲柄和从动曲柄均以相同的角速度转动,而连杆做平动。双摇杆机构,双摇杆机构是两连架杆均为摇杆的较链四杆机构O1.2、 格拉霍夫定理杆长之和条件:平面四杆机构的最短杆和最长杆的长度之和小于或者等于其余两杆长度之和。在较链四杆机构中,假如某个转动副能够成为整转副,则它所连接的两个构件中,必有一个为最短杆,并且四个构件的长度关系满意杆长之和条件。在有整装副存在的较链四杆机构中,最短杆两端的转动副均为整转副。此时,假如取最短杆为机架,则得到双曲柄机构:若取最短杆的任何一个相连构件为机架,则得到曲柄摇杆机构;假如取最短杆对面构件为机架,则得到双摇杆机构。假如四杆机构不满意杆长之和条件,则不论选取哪个构件为机架,所得到机构均为双摇杆机构。上述系列结论称为格拉霍夫定理。运用条件分析:1.1.maX+bnin其余两杆之和,此钦链四杆机构为双摇杆机构;2.1.max+1.min其余两杆之和,要详细分析:(I)1.min为机架为双曲柄机构(2)1.min为连架杆为曲柄摇杆机构(1.inin为曲柄)(3) 1.min为连杆为双摇杆机构1.3、 理论分析对图1的四连杆机构列出方程组。其中1.1.1.2、1.3、1.4为四根杆,1.4为机架。1.l×cosl+1.2×cos?=3xcos;+41.l×sin7+1.2×sin2-3sin3由此两个方程消去2,便可得到一个关于/、3的函数F(/,3)(3X3+4I×/)+(.?X1.IX-i然后用隐函数求出3=3(/)另解出角速度:/=wl×tw2=d(3)d(t)2、Matlab的实现(一)数据分析给出了3组数据:a) 1.l=8;1.2=25:1.3=20;1.4=20;b) 1.1=7:1.2=9;1.3=U;1.4=4;c) 1.l=7;1.2=6.2:1.3=10;1.4=6;用格拉霍夫定理进行分析得到:a为曲柄摇杆机构;b为双曲柄机构:c双摇杆机构;(二)Matlab求解并进行动画模拟d) 1.l=8;1.2=25;1.3=20;1.4=20;(曲柄摇杆机构)3=式/)图像实时动画模拟(部分戴解)W2的图像说明:其中w2(l)为先符号求导再赋值计算,时(2)为干脆数值求导。(下同)e) 1.l=7;1.2=9;1.3=11;1.4=4;(双曲柄机构)3=3(/)图像实时动画模拟(部分截解)W2的图像C)1.1=7;1.2=6.2:1.3=10:1.4=6;(双摇杆机构)3=J(/)图像实时动画模拟(部分截屏)W2的图像3、结果分析对3的角速度W2的求值得两种方法中,分析图像知:符号求导再代入数值更简单出现大的偏差(W2的图像中的红线)。干脆用数值求导得到的解更平稳。4、程序1、函数文件dd.mfunctionF=dd(y)global1.l1.21.31.4px=p;F=(1.3*cos(y)+1.4-1.l*cos(x)2)+(1.3*sin(y)-1.l*sin(x)2)-(1.22):2、计算3的文件y_figure.mglobal1.l1.21.31.4p%传递参数%1.l=8;1.2=25;1.3=20:1.4=20;%曲柄摇杆机构%1.l=7;1.2=9;1.3=11;1.4=4;%双曲柄机构1.l=7:1.2=6.2:1.3=10:1.4=6;%双摇杆机构%1.l=9;1.2=5;1.3=10;1.4=7;第双摇杆机构1.total=1.l+1.2+1.3+1.4;IJnaX=max(1.l1.21.31.4);1.min,l=min(1.l1.21.31.4):m=100;b=0;while(1.max+1.min)>=(1.total/2)str=双摇杆机构;b=l;breakendwhiIe(1.max+1.min)<(1.total/2)ifI=4sir='双曲柄机构;elseifI=II=3str=曲柄摇杆机构;elseifI=2sir=双摇杆机构;b=l;endendendbreakendswitchbcaseOm=100;x=linspace(O,2*pi,m);%确定隐函数自变量的范围yO=O.7341;与第一个方程的初值case1a=0.58;m=80;x=linspace(a,(2*pi-a),m);y0=1.2465;endy=f=;fork=l:mp=x(k);yl,fval,exitflag,output=fzero(,del',y);y=yl;y=y,yl;f=f,fval;endfigureplot(x(l:m),y(l:m),r.->),%绘制隐函数图形gridon3、计算w2的文件w_figure.mglobal1.l1.21.31.4wlwl=100;symsxxyy<x为输入杆转角,yy为输出角转角F=1.l*cos(xx)+1.2*(1-(1.3*sin(yy)-1.l*sin(xx)/(1.2)2)(12)-1.3*cos(yy)-1.4:W=(T)*(diff(F,xx)diff(F,yy)*wl;w21=subs(w,xx,yy,x,y);%用隐函数求导t=xwl;w22=diff(y).diff(t);%干脆数值求导plot(w21,r')holdonplot(w22,k')4、实时动画文件si1iangan.inpic=figure(,name,str):set(pic,'color',White');axisequalgridonaxis(-10,30,-10,20):axisonglobal1.l1.31.4xa=O:ya=O;%A点坐标xd=1.4;yd=0;%D点坐标xb=1.l*cos(x(1)jyb=1.l*sin(x(l);%B点坐标xc=1.3*cos(y(1)÷1.4:yc=1.3*sin(y(1);%C点坐标stick_l=line(xajxb,ya;yb,color',red',linewidth',5,1inestyle,);stick_2=line(xb;xc,yb;yc,color',g',1incwidth,5,'Iinestyle',);stick_3=line(xcjxd,ye;yd,color',b,1inewidth,5,,Iinestyle',);stick_0=line(xd;xa,yd;ya,color',y',1inewidth,5,,Iinestyle',);dot_a=line(xa,ya,color*,'r',1inestyle',.,markersize,30):dot_b=linc(xb,yb,color',black',Iinestyle*markersize,30);dot_c=line(xc,yc,color','r,color',0.10.70.3,Iinestylefmarkersize',30);dot_d=line(xd,yd,'color','r',Iinestyle',.,markersize,30);dt=2*pim;k=l;while1ifk>m;k=l;endxb=1.l*cos(x(k)+xa:yb=1.l*sin(x(k)+ya;xc=I.3*cos(y(k)+1.4;yc=1.3*sin(y(k);set(stick_l,Xdata',xa;xb,ydata,ya;yb);set(stick_2,Xdata',xc;xb,'ydata,yc;yb);set(StiCk_3,'xdata,xd;xc,ydata,yd;yc);set(dot_b,'xdata',xb,'ydata,yb);set(dot_c,xdata,xc,ydata,yc);set(gcf,doublebuffer','on');drawnow:pausek=k+l;end

    注意事项

    本文(matlab四连杆带代码.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开