向量与三角形内心、外心、重心、垂心知识的....docx
-
资源ID:1335370
资源大小:10.52KB
全文页数:2页
- 资源格式: DOCX
下载积分:5金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
向量与三角形内心、外心、重心、垂心知识的....docx
向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心中线的交点:重心将中线长度分成2:1;(2)垂心高线的交点:高线与对应边垂直;(3)内心一一角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心一一中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。二、四心与向量的结合(1)是的重心.证法L设是的重心.证法2:如图三点共线,且分为2:1是的重心(2)为的垂心.证明:如图所示O是三角形ABC的垂心,BE垂直AC,AD垂直BC,D、E是垂足.同理,为的垂心(3)设,,是三角形的三条边长,。是ABC的内心为的内心.证明:分别为方向上的单位向量,平分,),令()化简得(4)为的外心。典型例题:例1:是平面上一定点,是平面上不共线的三个点,动点满足,则点的轨迹一定通过的()A.外心B.内心C.重心D.垂心分析:如图所示,分别为边的中点.点的轨迹一定通过的重心,即选.例2:(03全国理4)是平面上一定点,是平面上不共线的三个点,动点满足,则点的轨迹一定通过的(B)A.外心B.内心C.重心D.垂心分析:分别为方向上的单位向量,平分,点的轨迹一定通过的内心,即选.例3:是平面上一定点,是平面上不共线的三个点,动点满足,则点的轨迹一定通过的()A.外心B.内心C.重心D.垂心分析:如图所示AD垂直BC,BE垂直AC,D、E是垂足.=+=0点的轨迹一定通过的垂心,即选.练习:1 .已知三个顶点及平面内一点,满足,若实数满足:,则的值为()A.2B.C.3D.62 .若的外接圆的圆心为O,半径为1,贝1()A.B.0C.1D.3 .点在内部且满足,则面积与凹四边形面积之比是()A.0B.C.D.4 .的外接圆的圆心为O,若,则是的()A.外心B.内心C.重心D.垂心5 .是平面上一定点,是平面上不共线的三个点,若,贝U是的()A.外心B.内心C.重心D.垂心6 .的外接圆的圆心为O,两条边上的高的交点为H,则实数m=7 .(06陕西)已知非零向量与满足(+)-=0且=,则AABC为()A.三边均不相等的三角形B.直角三角形C.等腰非等边三角形D.等边三角形8 .已知三个顶点,若,则为()A.等腰三角形B.等腰直角三角形C.直角三角形D.既非等腰又非直角三角形练习答案:C、D、C、D、D、1、D、C