欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    最新版圆锥曲线专题17之1 基础知识.docx

    • 资源ID:394859       资源大小:282.22KB        全文页数:25页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    最新版圆锥曲线专题17之1 基础知识.docx

    专题1白云出岫基础知识点第一锦椭圆横看成岭侧成峰,远近高低各不同;不同的角度,看到的世界也不同,站的位置不同,领略到的风景也不同.在学习圆锥曲线的过程中,从不同的角度去分析,去理解,去总结,才能欣赏到圆锥曲线世界的独特风景.圆锥曲线是宇宙的艺术,是一种对称和谐之美,这种美是杂乱中的秩序,是变化中的规律.圆锥曲线的定义,揭示了圆锥曲线的前世今生,揭示了曲线的内在联系,使焦点、离心率、准线构成了一个统一的整体,正所谓万物皆有因,万般皆有果;所有巧合,皆是天意,冥冥之中,皆是定数.学习数学,让你领略波澜壮阔之势,拥有高瞻远瞩之能,欣赏对称和谐之美,体会茅塞顿开之境!本书将在这里起航,愿我们一同在知识的浩瀚大海中遨游,探索宇宙的轨迹,领略世界的奥义.考点一椭圆基础1 .椭圆的定义平面内一个动点P到两个定点尸1、6的距离之和等于常数(P"+P周=2>忻周),这个动点P的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.若IPKl+|尸耳|=|耳闾,则动点尸的轨迹为线段耳仆若P6+P&<忸闾,则动点尸的轨迹无图形.2 .椭圆的标准方程与几何性质标准方程22A%=l(a>b>0)22图形Jt4lVl。,b7ra性质焦点E(-c,0),(c,O)M(Oi),6(0,C)焦距IKgI=2C(C=/-从)IEKI=2c(c=Ja2-b2)范围,yxb,y<a对称性关于X轴、),轴和原点对称顶点(±,O),(0,±Z?)(0,±),(±h,0)轴长轴长=2,短轴长=助离心率e=-(0<e<l)(注:离心率越小越圆,越大越扁)a3 .椭圆的通径以及有关最值过椭圆的焦点与椭圆的长轴垂直的直线被椭圆所截得的线段称为椭圆的通径,其长为椭圆上到中心距离最小的点是短轴的两个端点,到中心距离最大的点是长轴的两个端点.椭圆上到焦点距离最大和最小的点是长轴的两个端点.距离的最大值为+c,距离的最小值为-c.使用点到点的距离公式证明4 .点与椭圆的位置关系对于椭圆*+"=13>b>0),点P(XO,%)在椭圆内部,等价于今+g<l,点Pao,%)在椭圆外部,等价于同+g>l,结合线性规划的知识点来分析.ab25 .椭圆焦点三角形的面积为S=E.gng(0为焦距对应的张角)2考点二对椭圆定义的基础考察在处理椭圆问题的时候,要优先思考定义,俗称定义优先原则,而非上来就直接直线和椭圆联立.所以在解题的时候如果看到点在椭圆上,要时刻思考椭圆定义,将该点和焦点连线,用上定义分析问题.利用定义求解最值问题及轨迹问题,详见本章节第一定义的内容【例I】(镇江期末)已知椭圆。:上+16 9=1的左、右焦点分别为耳,K,过点K的直线交椭圆C于P, Q两点,若IKPl+IKQI=IO,则P0等于()A.8B.6C.4D.2例2(绥化月考)椭圆满足这样的光学性质:从椭圆的一个焦点发射光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.现在设有一个水平放置的椭圆形台球盘,满足方程:江+£=1,点A、8是它的169两个焦点,当静止的小球放在点A处,从点A沿直线出发,经椭圆壁(非椭圆长轴端点)反弹后,回到点A时,小球经过的最短路程是()A.20B.18C.16D.以上均有可能【例3】(武邑月考)椭圆4=1的左、右焦点分别为耳,玛,点P在椭圆上,如果M的中点在),轴上,那么P"I是IPEl的()A.7倍B.6倍C.5倍D.4倍【例4】(深圳期中)已知椭圆C:+f=1,点用与C的焦点不重合,若M关于C的焦点的对称点分别2516为A,B,线段MN的中点在。上,则4V+8N=()A.10B.15C.20D.25【例5】(荔湾期中)椭圆+£=1的左焦点为尸,直线x=z与椭圆相交于点A、B,当FAB43的周长最大时,E钻的面积是()A.-B.2C.-D.323【例6】已知椭圆£+3=1(。>>0)经过点(1,当),过顶点3,0),(0")的直线与圆/+V=|相切,则椭圆的方程为()AX2dX23/.X24y2X2Sy2.A.+v=lB.+-=1C.十二一=1D.÷-=l2-423355考点三桶圆的简单几何性质【例7】(龙海期中)已知方程匕+上=1表示椭圆,求女的取值范围4一kk-2【例8】(永州二模)已知点耳,K是椭圆/+3y2=i2的两个焦点,点P是该椭圆上的一个动点,那么IPE+I的最小值是()A.OB.4C.42D.43注:点到原点的距离,可以利用点到点的距离公式来分析求解,用比替换掉/,整理成关于小的函数来求解最值.【例9】(湖北期末)已知椭圆x2+gy2=3>0)与a2,1),8(4,3)为端点的线段没有公共点,则。的取值范围是()A. 0<a<- 2C. a <ta>22d 3 一 麻B. 0<«<fio>- 22 32廊D. <a<-22【例4天心月考)已知椭圆呜+方= l(>b>0)的左右焦点分别为片、F2, O为坐标原点,A为椭圆上一点,且A645=0,直线A8交),轴于点M,若IaKI=6OM,则0年与4AEK的面积之比为()A4D4厂25C5AB.CD812714418【例II(河南月考)已知夕为椭圆C:?+q=l上一个动点,F1>F?是椭圆C的左、右焦点,O为坐标原点,O到椭圆C在P点处的切线距离为d,若IPKlP6=,则d=.张忐求解切线斜率的时候可应用后面章节的极点极线原理快速求出切线为、+二Z=L43【例12(江西模拟)如图所示,AlA2是椭圆UA!=1的短轴端点,点M在椭圆上运动,且点M不S与A,A2重合,点N满足NA1LMA1,则不纳生=()S.Zg【例13】(武昌月考)已知动点P在椭圆工+工=1上,若点A的坐标为(3,0),点M满足IAMl=1,且4940PMAM=Of则IPMI的最小值是.【例14】(南岗四模)已知椭圆T:二+V=i(>i)的焦点尸(_2,0),过点M(M)引两条互相垂直的两直线4、a4,若P为椭圆上任一点,记点P到4、4的距离分别为4、出,则片+d;的最大值为()考点四椭圆的离心率以及范围问题在处理问题的时候一定要注意定义优先原则,用上椭圆定义,再结合平面几何、三角函数、不等式、以及函数的内容,往往可以解决诸多离心率问题.另外,本章节只涉及基础的离心率问题以及范围问题,进阶内容需要学习后续焦长体系和焦点三角形等后续内容.方&一利用O=空,2”利用椭圆定义去转换,2c利用焦距表示.Ia【例15】(大石桥期中)设M为椭圆二+±=l(>b>0)上一点,F-F2为椭圆的焦点,若NM名=75°,NgK=I5°,求椭圆的离心率.【例16X2018新课标I)己知A,乃是椭圆C的两个焦点,尸是。上的一点,若P"LP6,且/”可=60。,则C的离心率为()A.1一3B.2-3C.D.3-l2222【例17(榆林一模)设小入分别是椭圆C*+1=l(>b>O)的左、右焦点,点尸在椭圆C上,线段P匕的中点在),轴上,若NPK鸟=30。,则椭圆C的离心率为()方做二利用与C建立一次二次方程不等式.22【例18】(2018新课标II)已知尸I,F,是椭圆C:;+与=l(”>0)的左、右焦点,A是C的左顶点,ab点尸在过A且斜率为逆的直线上,为等腰三角形,N片6P=120。,则C的离心率为()22【例19】(武进期末)已知产是椭圆马+2=13>人>0)的左焦点,A为右顶点,P是椭圆crb2上一点,PFJ轴.若IPFI=JA11,则该椭圆的离心率是.4方法三利用焦半径的取值范围为a-c,+c【例20(宜昌期末)已知耳、K分别是椭圆C*+3=l(>Z>>0)的左、右焦点.若椭圆C上存在点尸,使得线段P匕的中垂线恰好过焦点尸2,则椭圆C离心率的取值范围是()A.1,1)B.1,与1C.p1)D.(0,g【例21(广东期末)设%F,分别是椭圆£+耳=1(以>>0)的左、右焦点,若在直线x(其abc中/+从=/)上存在点p,使线段PK的垂直平分线经过点后,则椭圆离心率的取值范围是()C.哼,1)D g,1)A.(0,午B.(0,早方眩B此题可利用最大顶角。满足sin0eVl.2例22已知椭圆二十1=l(>>0)的焦点分别为F1,F2,若该椭圆上存在一点P,使得ZFxPF2=60°,a'b则椭圆离心率的取值范围是.方依五利用基本不等式.【例23】(龙凤一模)在椭圆上有一点M,£,鸟是椭圆的两个焦点,若IMqMFj=2从,椭圆的离心率的取值范围是.第二裙双曲线考点一双曲线基础1 .双曲线定义在平面内,到两个定点耳、K的距离之差的绝对值等于常数2(。大于0且幼<|£6|)的动点尸的轨迹叫作双曲线.这两个定点片、K叫双曲线的焦点,两焦点的距离叫作双曲线的焦距.标准方程224r-r=l(a>0,>0)erb-y222一一7=l(>O,b>O)a-b-图形萍性质焦点(-G),F2(CfO)E(O,c),F2(OfC)焦距IKEl=2c(c=Ja2+b2)F,lf2=2c(c=Ja2+b2)范围yRyy-或y,XeR对称性关于X轴、y轴和原点对称顶点(±,0)(0,±a)轴实轴长=2,虚轴长=2Z?离心率e=-(e>l)注:离心率越大,双曲线开口越大a渐近线方程y=±xa,ay=±-xh注意:判断焦点位置的方法,椭圆,谁下面数字大焦点跟谁;双曲线,谁的系数是为正,焦点跟谁.简记:椭圆,谁大跟谁,双曲线,谁正跟谁2 .双曲线的通径2h2过双曲线的焦点且与双曲线实轴垂直的直线被双曲线截得的线段,称为双曲线的通径.通径长为3 .点与双曲线的位置关系对于双曲线5-1=l(0>b>0),点尸5,为)在双曲线内部,等价于另一鸟1.abab点P(XO,%)在双曲线外部,等价于乌-E<l结合线性规划的知识点来分析.ab4 .双曲线常考性质性质一双曲线的焦点到两条渐近线的距离为常数;顶点到两条渐近线的距离为常数F;使用点到直线的距离公式即可证明性质二双曲线上的任意点?到双曲线。的两条渐近线的距离的乘积是一个常数小;c证明设Pa,y)是双曲线E-4=l(>b>0)上任意一点,该双曲线的两条渐近线方程分别是冲一加=0ah和+b=o,点尸(w,x)到两条渐近线的距离分别是与=驾*+I,则呼+他I驾.性质二双曲线焦点三角形面积为J(可以这样理解,顶点越高,张角越小,分母越小,面积越大)Utan2考直二双曲线定义的基础考察在处理双曲线问题的时候,也要优先思考定义,俗称定义优先原则,而非上来就直接直线和双曲线联立.所以在解题

    注意事项

    本文(最新版圆锥曲线专题17之1 基础知识.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开