欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    线性代数教学资料chapter4.ppt

    • 资源ID:465553       资源大小:762KB        全文页数:39页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性代数教学资料chapter4.ppt

    1THE EIGENVALUE PROBLEM4 THE EIGENVALUE PROBLEM2THE EIGENVALUE PROBLEMOverviewlIn section 4.4 we move on to the general case,the eigenvalue problem for(nn)matrices.The general case requires several results from determinant theory,and these are summarized in section 4.2.l The eigenvalue problem is of great practical importance in mathematics and applications.lIn section 4.1 we introduce the eigenvalue problem for the special case of(22)matrices;this special case can be handled using ideas developed in Chapter 1.3THE EIGENVALUE PROBLEMCore sections The eigenvalue problem for(22)matrices Eigenvalues and the characteristic polynomial Eigenvectors and eigenspaces Similarity transformations and diagonalization 4THE EIGENVALUE PROBLEM21113141111011430212102114.1 The eigenvalue problem for(22)matricesA5THE EIGENVALUE PROBLEM:For an(n n)matrix,find all scalars such Definitionthat the e 4.1.1quaionA AXXhas a nonzero solution,such a scalar is called an eigenvalue of,and any nonzero(n 1)vector satisfying is called an eigenvector corresponding to.AXAXXAll scalarsNonzero solution/Infinitely many solution 1.The eigenvalue problem6THE EIGENVALUE PROBLEMThe Geometric interpretation of Eigenvalue and eigenvector AXX00XAXXAX7THE EIGENVALUE PROBLEMThe calculation of Eigenvalue and eigenvector AXX?,?X0AXX0()AI XHomogeneous Systems0()XStep 1:find such thatall scalar is singular.AI0(-)Step 2:given a scalar such that is singular,find such that all nonz ero vectorsXAI XAI12000det()()(),is singular nAAr AnAXXA AAlinearly dependent8THE EIGENVALUE PROBLEMEigenvalue and eigenvectors for(22)matrices00is singular.abAIcdabcdabAcd9THE EIGENVALUE PROBLEM()(2adadbc)0=?abcdabAcd22det()121112ad=aadbc=aA10THE EIGENVALUE PROBLEMExample:Find all eigenvalues and eigenvectors of A,where 2625Asolution:The matrix has the form526 2AAII 11THE EIGENVALUE PROBLEM2(1)is singular if and only if52120or 320AI()().212since 3221it follows that is singular if and only if2 or 1()(),AI12THE EIGENVALUE PROBLEM112222222323226400220331(),forAIxxXxxxx122 or 12625A13THE EIGENVALUE PROBLEM21222223142216300110221(),forAIxxXxxxx for a given eigenvalue,there are infinitelymany eigenvectors correspondNointe thag tto.122 or 12625A14THE EIGENVALUE PROBLEM4.2 Determinants and the eigenvalue problem(omit)4.3 Elementary operations and determinants(omit)15THE EIGENVALUE PROBLEM4.4 Eigenvalues and the characteristic polynomial(2)Given an eigenvalue,find all vectors such that(0.(Such vectors are the eigenvectors corresponding to th ne eigenvalonzeroue.)XAI)X(1)Find such that is singular.(or =0).(Such scalars are tall scalarhe eigenvas lues of)AIAIAThe eigenvalue problem for an(nn)matrix two pahsas:rtA16THE EIGENVALUE PROBLEMExample:Use the singularity test to determine the eigenvalues of the matrix A,where 112330111AIn this section we focus on part 1,finding the eigenvalues.is singular0AIdet(AI)17THE EIGENVALUE PROBLEMsolution:A scalar is an eigenvalue of if and only if is singular.such that0AAIdet(AI)where is the matrix given by111000330021100111033211AIAI112330111A18THE EIGENVALUE PROBLEM32we have 1110332115632det(AI)()()123from the singularity test,we see that is singularif and only if 02 or 3AI,112330111A1231122331235500aaadet(A)19THE EIGENVALUE PROBLEMThe characteristic polynomial111212122212nnnnnnaaaaadeta(AaaaI)Let be an(nn)matrix.TheTheorem:is a polynomial of degree n n i n.det(AIA)20THE EIGENVALUE PROBLEM Let be an(nn)matrix.The nth-degree polynomial,is calledDefinition:characteristi the for.c polyno mialAp()det(AI)A:Let be an(nn)matrix,and let be the characteristic polynomial for.then the eigenvalues of are precisely the rootTheores of 0m.ApAAp()characteristic polynomialp()det(AI)0p()det(AI)characteristic equation21THE EIGENVALUE PROBLEM(1)an(nn)matrix can have no more than n distinct eigenvalues.(2)an(nn)matrix always has at least one eigenvalue.The number of times the factor()appears in the factorization of given above is calledalgebraic multiplicity of the rp)r(22THE EIGENVALUE PROBLEMk1 Let be an(nn)matrix,and let be an eigenvalue of.Then (1)is an eigenvalue of;1(2)If is nonsingular,then is an eigenvalue of;(3)If c is any scalar,then+c is an Theorem:k-AAAAAeigenvalue of AcI.Special Results)(Af2aAbAcI)(f2abc111(1)kkkkA XA(AX)A(X)(AX)111(2)or 0111110ndet(AI)det(AA A)det(A(IA)det(A)det(IA)det(IA)()det(AI)(3)(AcI)XAXcXXcX(c)X111(2)AXXXA XXA X23THE EIGENVALUE PROBLEM0TTdet(AI)(det(AI)det(AI)00det(A)det(AI):Let be an(nn)matrix.Then and haveTheoremsame eig thenve.aluesTAAA Let be an(nn)matrix.Then is singTheorem:if and only ifular =0 is an eigenvalue of.AAA24THE EIGENVALUE PROBLEM3232:Let 22 and for anymatrixdefine the matrix polynomialby22where Iis the identity matriprove that if is an eigenvalue of,then thenumber is an ei Examplegxq(t)ttt;(n n)H,q(H)q(H)HHHI,(n n)Hq().envalue of the matrix q(H).25THE EIGENVALUE PROBLEMHXX3232323222222222q(H)X(HHHI)XH XH XHXIXXXXX()Xq()X32 22q(t)ttt 26THE EIGENVALUE PROBLEM4.5 Eigenvectors and EigenspacesEigenspaces and Geometric Multiplic

    注意事项

    本文(线性代数教学资料chapter4.ppt)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开