欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    线性代数教学资料chapter3.ppt

    • 资源ID:465554       资源大小:503.50KB        全文页数:74页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    线性代数教学资料chapter3.ppt

    3 3 The Vector Space R The Vector Space Rn n 3.2 Vector space Properties of Rn 3.3 Examples of Subspaces 3.4 Bases for Subspaces 3.5 Dimension 3.6 Orthogonal Bases for SubspacesCore SectionsIn mathematics and the physical sciences,the term vector is applied to a wide variety of objects.Perhaps the most familiar application of the term is to quantities,such as force and velocity,that have both magnitude and direction.Such vectors can be represented in two space or in three space as directed line segments or arrows.As we will see in chapter 5,the term vector may also be used to describe objects such as matrices,polynomials,and continuous real-valued functions.3.1 IntroductionIn this section we demonstrate that Rn,the set of n-dimensional vectors,provides a natural bridge between the intuitive and natural concept of a geometric vector and that of an abstract vector in a general vector space.3.2 VECTOR SPACE PROPERTIES OF Rn.numbers real ,:2121nnnxxxxxxXXRThe Definition of Subspaces of RnA subset W of Rn is a subspace of Rn if and only if the following conditions are met:(s1)*The zero vector,is in W.(s2)X+Y is in W whenever X and Y are in W.(s3)aX is in W whenever X is in W and a is any scalar.Example 1:Let W be the subset of R3 defined by.numbers realany and,:32321321xxxxxxxxXXWVerify that W is a subspace of R3 and give a geometric interpretation of W.Solution:Step 1.An algebraic specification for the subset W is given,and this specification serves as a test for determining whether a vector in Rn is or is not in W.Step 2.Test the zero vector,of Rn to see whether it satisfies the algebraic specification required to be in W.(This shows that W is nonempty.)Verifying that W is a subspace of RnStep 3.Choose two arbitrary vectors X and Y from W.Thus X and Y are in Rn,and both vectors satisfy the algebraic specification of W.Step 4.Test the sum X+Y to see whether it meets the specification of W.Step 5.For an arbitrary scalar,a,test the scalar multiple aX to see whether it meets the specification of W.Example 3:Let W be the subset of R3 defined by.1:21numbers realany x and x ,21xxXXWShow that W is not a subspace of R3.Example 2:Let W be the subset of R3 defined by.,:321number realany x,3xx,2xx11312xxxXXWVerify that W is a subspace of R3 and give a geometric interpretation of W.Example 4:Let W be the subset of R2 defined by.,:21integersany x and x21xxXXWDemonstrate that W is not a subspace of R2.Example 5:Let W be the subset of R2 defined by.,:21 0 x or 0 x21eitherwherexxXXWDemonstrate that W is not a subspace of R2.Exercise P175 18 323.3 EXAMPLES OF SUBSPACESIn this section we introduce several important and particularly useful examples of subspaces of Rn.The span of a subsetTheorem 3:If v1,vr are vectors in Rn,then the set W consisting of all linear combinations of v1,vr is a subspace of Rn.If S=v1,vr is a subset of Rn,then the subspace W consisting of all linear combinations of v1,vr is called the subspace spanned by S and will be denoted by Sp(S)or Spv1,vr.For example:(1)For a single vector v in Rn,Spv is the subspace Spv=av:a is any real number.(2)If u and v are noncollinear geometric vectors,then Spu,v=au+bv:a,b any real numbers(3)If u,v,w are vectors in R3,and are not on the same space,then Spu,v,w=au+bv+cw:a,b,c any real numbersExample 1:Let u and v be the three-dimensional vectors210 vand 012uDetermine W=Spu,v and give a geometric interpretation of W.The null space of a matrixWe now introduce two subspaces that have particular relevance to the linear system of equations Ax=b,where A is an(mn)matrix.The first of these subspaces is called the null space of A(or the kernel of A)and consists of all solutions of Ax=.Definition 1:Let A be an(m n)matrix.The null space of A denoted N(A)is the set of vectors in Rn defined by N(A)=x:Ax=,x in Rn.Theorem 4:If A is an(m n)matrix,then N(A)is a subspace of Rn.Example 2:Describe N(A),where A is the(3 4)matrix.142145121311ASolution:N(A)is determined by solving the homogeneous system Ax=.This is accomplished by reducing the augmented matrix A|to echelon form.It is easy to verify that A|is row equivalent to.000000211003201Solving the corresponding reduced system yields x1=-2x3-3x4 x2=-x3+2x4,1023011223243434343xxxxxxxxXWhere x3 and x4 are arbitrary;that is,.numbers realany and ,10230112:)(4343xxxxXXANExample 5:Let S=v1,v2,v3,v4 be a subset of R3,where.1-52 v,541 v,532 v,1214321andvShow that there exists a set T=w1,w2 consisting of two vectors in R3 such that Sp(S)=Sp(T).Solution:let.155154322121ASet row operation to A and reduce A to the following matrix:000012104501000012102121363012102121.155154322121ASo,Sp(S)=av1+bv2:a,b any real numberBecause Sp(T)=Sp(S),then Sp(T)=av1+bv2:a,b any real numberFor example,we set 7015322121323211vvw31053212122212vvw.155154322121AThe solution on P184,152541532121TAAnd the row vectors of AT are precisely the vectors v1T,v2T,v3T,and v4T.It is straightforward to see that AT reduces to the matrix.000000310701TBSo,by Theorem 6,AT and BT have the same

    注意事项

    本文(线性代数教学资料chapter3.ppt)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开