欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    高数一章9节ppt课件.ppt

    • 资源ID:474776       资源大小:357.50KB        全文页数:19页
    • 资源格式: PPT        下载积分:10金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高数一章9节ppt课件.ppt

    1第九节第九节 无穷小的比较无穷小的比较0 无穷小的比较无穷小的比较0 等价无穷小等价无穷小2一、无穷小的比较一、无穷小的比较引例引例xxx3lim20 xxxsinlim02201sinlimxxxx2210,sin,sinxx xx xx当当时时都都是是无无穷穷小小.极限不同极限不同,反映了趋向于零的反映了趋向于零的“快慢快慢”程度不同程度不同.23;xx比比趋趋近近零零的的速速度度要要快快得得多多sin;xx与与 大大致致相相同同不可比不可比.,0,1 xx1sinlim0 不不存存在在,观察各极观察各极限限3lim(0),;c c 如如果果则则说说是是同同阶阶无无穷穷小小与与lim0,高高阶阶的的无无如如果果则则说说 是是比比穷穷小小 记记作作,0.设设是是同同一一过过程程中中的的无无穷穷小小 且且定定义义lim(0,0),kc ckk 如如果果则则说说 是是关关于于 的的 阶阶lim1,如如果果则则说说 与与 是是等等价价无无穷穷小小,记记作作);(o lim,如如果果则则说说低低阶阶的的是是比比无无穷穷小小;无无穷穷小小;.422023lim0,33()(0).xxxxxxxo xx 因因=0,=0,所所以以当当时时是是比比 高高阶阶的的无无穷穷小小,即即22111lim,1nnnnnn 因因=,所所以以当当时时是是比比低低阶阶的的2239lim3,33.xxxxxx 因因=6,=6,所所以以当当时时-9-9与与是是同同阶阶无无穷穷小小例例如如:无无穷穷小小.5201coslim0,1cos.xxxxxx 1 1 因因=,=,所所以以当当时时是是2 2关关于于 的的二二阶阶无无穷穷小小0sinlim0,sinsin(0).xxxxxxxxx 因因=1,=1,所所以以当当时时与与 是是等等价价无无穷穷小小,即即6111.nxxn7二、等价无穷小的性质二、等价无穷小的性质().o定定理理1 1 ,证证 设设则则必必要要性性 limlim(1)(),o 因因此此().o 即即lim1 110,(),o设设 则则充充分分性性 ()limlimo .因因此此()lim(1)o 1,81 0,sin,t2 an,1cos.2xxxxxxx因因例例时时2211cos()2xxo x0,x 所所以以当当时时 有有sin(),tan(),xxo xxxo x9,limlim 定定理理设设且且存存在在 则则也也存存在在,且且2 2,limlim 证证 lim limlimlim limlim.1030sinlim.3xxxx 例例3 3求求 201lim3xx 定定理理2 2表表明明,在在求求两两个个无无穷穷小小之之商商的的极极限限时时,分分子子分分母母都都可可用用等等价价无无穷穷小小来来代代替替,可可使使 注注:计计算算简简化化.3300sinlimlim33xxxxxxxx 解解 1.3 111230(1)1 lim.cos14 xxx 例例求求12223110,(1)1,cos132xxxxx解解 当当1230(1)1limcos1xxx 所所以以 20213lim12xxx 23 见例见例1 11220tan 2lim.1cosxxx 例例5 5 求求210,1cos,tan2 2.2xxxxx解解 当当时时202(2)lim12xxx 所所以以,原原式式.8 13sin01lim.ln(13)xxex 例例6 6 求求313sinlim0 xxx原式原式0,x 解解 当当时时,3)31ln(xx,sin1sinxex 注注:不能滥用等价无穷小代换不能滥用等价无穷小代换.对于代数和中各对于代数和中各无穷小不能分别替换无穷小不能分别替换.1430tansinlim.sin 2xxxx 例例 求求7 7解解.sin,tan,0 xxxxx时时当当 30)2(limxxxx 原式原式.0 解解,0时时当当 x)cos1(tansintanxxxx ,213x,22sinxx330)2(21limxxx 原式原式.161 错错 正正确确解解法法如如下下:15常用等价无穷小常用等价无穷小:,0时时当当 x用等价无穷小可给出函数的近似表达式用等价无穷小可给出函数的近似表达式:lim1,().o 因因若若则则有有.21cos1,1,)1ln(,arctan,tan,arcsin,sin2xxxexxxxxxxxxxx tan(),1()xxxo xexo x111.nxxn16思考题思考题1.1.任何两个无穷小量都可以比较吗?任何两个无穷小量都可以比较吗?2.2.比较下列各对无穷小的阶比较下列各对无穷小的阶11)1,1.1xxxx 时时与与2)0,11sintan.xxxxx时时与与33)1,tan(1).xxxxxx时时与与3.已知当已知当x0时时,1)1(312 ax1cos x与与是等价无穷小,求是等价无穷小,求a.17思考题解答思考题解答1.不能不能,x 例例当当时时,1)(xxf xxxgsin)(都是无穷小量都是无穷小量但但)()(limxfxgxxxsinlim不存在且不为无穷大不存在且不为无穷大,()()xf xg x 故故当当时时与与不不能能比比较较.2.解解 1)1)11111limlim111xxxxxxx 18xxx 1112)2000112limlimsintan(11)2 lim(11)xxxxxxxxxx xxx x xx 11是比是比sinx tanx低阶的无穷小低阶的无穷小.1912230021(1)133.limlim1,1cos12xxaxaxxx 解解 .23 a则则3tan(1)xxxxx是是比比高高阶阶的的无无穷穷小小.3200tantan3)limlim0(1)1xxxxxxxxxx3tan(1)xxxo xx

    注意事项

    本文(高数一章9节ppt课件.ppt)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开