欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    数列的前n项和求解方法专题讲解.docx

    • 资源ID:674111       资源大小:254.67KB        全文页数:24页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数列的前n项和求解方法专题讲解.docx

    例LLl已知数列4的前项和为S,=2"-l,bn=atl+2n-,则数列d的前项和为OA.2n-,+-lB.2n1+2n2-lC.T+n2-1D.2n,+W2+1【答案】C【解析】.bn=an+2n-1,数列bn的前n项和=Sn+l+3+.+(2n-l)i1n(l+2/1-1)=Z-H2=2-l÷n2.例1.1.2已知数列“中,4=1,。=(一1)”(%+1),记S”为4前项的和,则S.=【答案】一IoO5【解析】<a=l,ar1+=(1)n(an+l)>.*.a2=2,a3=-1>a4=0,a5=l»a=-2.从而可得数列an是以4为周期的数列*Szou=a+a2+a3+a2oi3=(a1+a2÷a3÷a4)×503+a2013=503×(l-2-l÷0)+1=-1005.例1.1.3已知数列¢,为等差数列,4=3,4=7;数列2为公比为q(q>1)的等比数列,且满足集合也也=1,2,4.(I)求数列q,2的通项公式;(II)求数列4+么的前项和S11【答案】(I)an=2n-;hn=2n-i(11) Sn=n2+T-【解析】(I)设等差数列的首项和公差分别为ai、d,V32=3»a4=7,.*.a÷d=3,a÷3d=7,解得:a=l,d=2,.*.a=1÷2(n-1)=2n-L;等比数列bn成公比大于1的等比数列且b,b2,b3)=h2,4,.*.b=l,bz=2,b3=4,*b1=1,q=2,b11=2n,;(11)由(I)可知Sn=(a+a2+an)+(bl+b2+bn)(1+2-1)1-2”2+1-2=n2÷2nl.序相加法例1.2.1已知f()=+in-,则41)+/(2)+/(3)+/(99)的值为O100-X99A.5000B.4950C.99D.2【答案】B【解析】:/(x)=x+n-,100tX100_y/(x)+f(100-x)=x+ln+100-x+ln=100»lOOxX/(1)+/(2)+/(3)+.+/(99)=50(1)+f(99)-f(50)=50×l-50=4950.例1.2.2Sin21o+sin22o+sin23o+.+sin289o.89【答案】S=-2【解析】S=sin2lo+sin22o+sin23o+-+sin2890QQ5=sin289o+sin288o+sin287o÷+sin2lo,/.2S=89,S=竺.2例1.2.3设/(X)=-L产,利用课本中推导等差数列前项和公式的方法,可求得2t+2/(-5)+/M)+/(O)+-+/(5)+/(6)的值为【答案】3立【解析】.(x) /(i-) =12x2 +近- 2 +"2'2x+22/(x)+f(l-x)=!尸=+''f2a+22,x+22÷22÷22x设S=/(-5)+/(-4)+/(0)+/(5)+/(6),则S=/(6)+/(5)+/(0)+.+/(T)+/(-5),:225="+/(-5)1+"+/(-4)+f(-5)+/(6)1=62,:5=/(-5)÷/(-4)+/(0)+/(5)+/(6)=3人.随堂练习随练LI数列4的前项和为S"j-+"+l,=(T)ZSWN")则数列出的前5°项和为().A.49B.50C.99D.100【答案】A解析当=1时,"=$=3当22时,为=St-SZ=2(22).f3,i=1.bl+b2+0=(-3+4)+(-6+8)+(-98+100)=l÷2+2+4=4924个随练1.2已知an是等比数歹U,满足=6,%=T8,数歹U他“满足a=2,且2+为是公差为2的等差数列.(I)求数列%和2的通项公式;(II)求数列2的前/项和.【答案】(I)=-三-=h+(-3,(n)n(+l-(-3r"24【解析】(I)设数列af1的公比为q,a2=aq=6ay=a/=-18解得a=-2,q=-3所以,an=-2×(3)n1令Cn=2be+av则C=2b+a=2,c11=2÷(n-1)×2=2n%=+(-3尸(II)Vbn=n+(-3)1,数列L的前n项和:Sn=(l+2+3+.÷n)+(-3)0+(-3)+(-3)2+(-3)3+.+(-3)n1(+1)1-(-3)"=2+1-(-3),.+1(3)”Jt,-'”24x-11随练1.3已知函数f(x)=7,则/(1)+/(2)+/(3)+/(一)+/(一)=.l+x23【答案】-21【解析】:函数/(%)=±7,.")=上=一一,寸()+/(工)=.1+xX1÷4X+1X:.f(1)+/(2)+/(3)+/(-)+f(!)=f(I)+1+1=-.2324随练“设加夫【答案】0064,x2【解析】+得 2S = 2012=>S = 1006I)=产豆=77?J3+/(I)=I随练1.5已知函数f(X)=若;,数列4的前项和为Sn,且q=/(蒋),则S刈7O2019A.1008B.1010C.D.20192【答案】B一 .数列的求和方法1 .裂项相沿法T芯'的通项拆成两项之差、正负相消剩下首尾若干项.已知数列%为等差数列,且公差不为0,首项也不为0,求和:el÷1z11、el1z11、n首先考虑Z=-(),则Z-()=.=I44+1Mdai4+i=aiai+xd«,an+laian+i已知数列4为等差数列,且公差不为0,首项也不为0,下列求和f-lj=之区;M也可用裂项求和法.i=Jq+J4*1f=d2 .错位相减法:对一个由等差数列及等比数列对应项之积组成的数列的前几项和,常用错位相减法an=bncn,其中4是等差数列,q是等比数列,记S”=S-十%*+3,则qSn=blc2+-1cn+f+1,两式相减即可求得.一.方法点拨对于分母为三次函数的裂项,先裂成两个分母为二次的分式之差,再分别裂项.二 .必备公式1J_L1J(I_!_)拆项公式:(+1)n+1;n(n+2)2n+2;1Iz11、-=,(-)(2-1)(2+1)22/1-12+1例2.1.1已知数列的前n项和Sn=M3,T),且=27(1)求数列qJ的通项公式;(2)若2=bg3(,求数列的前项和北.l+l,=_1.【答案】(I)ann(2)n+1,k=-【解析】当=3时,=S3-S?=©3'-3-)=27,解得2当2时,W-S,=I(3-1)-(3-,-l)=(3-3,)=3"q=$=3也满足上式,故a.=3";(2)=log,3=n,=3÷(+1)nn+,11111111n223n+1n+zz+1例2L2已知数列aj是各项均不为零的等差数列,S.为其前n项和,(nM),若不等式.对任意nM恒成立,则实数人的最大值是一【答案】1/2例2.1.3已知等差数列的前项和为sn,a3=3,54=10,则数列一Ig的前100项的和为()200A.101【答案】A100I2B.C.D.101101101【解析】.内:=3,S4=""2=10,.cr1+%=W+%=5g=2所以等差数列qt的公差d=a3-a2=l,.at=a2-d=l,通项公式为2n(n+1)1则其前项和为S”二二L._=2S”则数列J的前100S,1 1 1 1 + + .+ 223100焉卜一击卜部例2.1.4数列4满足4=1'对任意的见eyv'都有4"+"=品+%+加",则1111÷+FHaa2。3fl2O17等于()例2.2.1已知等比数列叫的前项和为Si若S3=7,S6=63,则数列,的前项和为()【解析】由题意可得,公比“力,.4(j)=7,W"'I,1-q-q相除可得l+3=9,q=2,'=l.故G="T=2Tnan=n2n'f数列wlt的前项和MI=I2。+221+.+2一,2,1=l2l+222+.+(n-l)2"l+n2"*l-2z,两式相减可得,-M=I+2+22+.+2"-f0=n2lt=2n-l-n2=(l-n)2n-l,1-2:.M»=(n-1)2n+1故选:D例2.2.2若数列&的通项公式为加=2,则前n项和为()2”A-Sn=l-B.Sn=2-22一2CS11zzn(I-)D.S11zz2÷22-2"【答案】B【解析】可用错位相减求或验证Si、S2.法一(验证法):S=a=2f2,排除D.I2Sz=a+a2=-+=1.排除A,C.选B222法二(错位相减法):Sn=a+a2+.+an=i+.+-222TIl2公22222十aICIIl1n1 n .+2-1222,故选B. 2”-得:-s-+-+-*Sn=1+-7"+222数列bn =例2.2.3已知数列«满足:a1=La“=2"("N")og,2(l+%)(wN,),Tn=bb2+-+bn,则几的值为()1+为【解析】:a=l,a11+-a11=2n(nN*)f.*.as-a=2>a3-a2=22ta4-a3=23,an-al=2n,等式两边同时相加得:an-a=2+22+23+.2nl,1-2BPan=a+2+22+23+.2nl=l+2+22+23+.2n',=2n-1,1-2T等)=粤号号=野则Tn=L+W,222232"ml1_123/1-1n台22223242”2n+l-得ITl 1-Tn=- + 22 222:11 n+ 2t+-"+27 '尸=,4-=l2",n÷1则 Tn=2 -2'i-A2÷=2=空123则Tlo=2-=2-4256 25621028例2.2.4在等差数列4

    注意事项

    本文(数列的前n项和求解方法专题讲解.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开