中心极限定理是研究独立随机变量的极限分布为正态分布的问题设从均值为 、方差.docx
-
资源ID:719248
资源大小:13.51KB
- 资源格式: DOCX
下载积分:5金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
中心极限定理是研究独立随机变量的极限分布为正态分布的问题设从均值为 、方差.docx
中心极限定理是研究独立随机变量的极限分布为正态分布的问题。设从均值为、方差中心极限定理是概率论中的重要定理,它描述了独立随机变量的和的分布性质。给定一组独立随机变量,如果每个随机变量的期望值和方差都存在,那么无论这些随机变量的分布是什么,当随机变量的数量足够大时,这些随机变量的和的分布趋近于正态分布。假设我们有一组独立随机变量XI,X2,.,Xn,每个随机变量的期望值为P,方差为。-2。根据中心极限定理,当n足够大时,(XI+X2+.+Xn)/(n2)的分布趋近于标准正态分布N(0,1)。这个定理在许多领域都有应用,例如统计学、金融、生物信息学等。现在我们要来计算这个定理中的具体数值。计算结果为:标准正态分布的累积分布函数值为0.5的概率为0.50所以,中心极限定理告诉我们,当n足够大时,(XI÷X2+.÷Xn)/(n2)的分布趋近于标准正态分布N(0,1),其中标准正态分布的累积分布函数值为0.5的概率为0.5o