欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    数值分析习题第四章.docx

    • 资源ID:745241       资源大小:86.63KB        全文页数:6页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数值分析习题第四章.docx

    第四章习题1.确定以下求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(x>A.1(-)+A)(0)+AJ;J一(2)J;A,(-)+Aj(O)+Aj(h);1j(4Zr/(-1)+2)+3(x2)3;£fxdx(0)÷/()/2+ah2/'(0)+/1()解:(1)求积公式中含有三个待定参数,即A0,4,将/(x)=l,%/分别代入求积公式,并令其左右相等,得AT+A=2*-hl+A1)=0解得AT=A=;0,A)=gz°2(a1+a1)=3所求公式至少具有2次代数精度。又由于dx-(-)3+(ft3)卜"Xw(-")'+的4)故£/(大班4j(-z)+4/(0)+AJ(Zz)具有三次代数精度。(2)求积公式中含有三个待定系数:A,1,o,A1,故令公式对/(x)=LX,,准确成立,得A_+0+A=4万,一MAI+A)=0,解得AT=A=力,o=4/?2Al=4h=h2U.,÷A)=j3333故J;/(MXI从/(-力)+/()-1(o)j-2h33因J:/(4Zr=O而,卜研+R=O又1人丝皿占心+川J-2力533lj所以求积公式只具有三次代数精度。(3)求积公式中韩两个待定常数阳、x2,当令公式对F(X)=I准确成立时,得到£i=2=(1+2+3)此等式不含有待定量七、X2,无用,故需令公式对/(x)=x,炉准确成立,即JJYZr=0=(-1+2x1+3x2)f产"H+M)2x1+3x2=12*+3W=I解上述方程组得X2 = 0.52660 x1 = -0.28990X2=-0.12660-或,X1=0.68990故有1(x>Zri(-1)+2/(0.68990)+3/(-0.12660)或,(x>Zr(-1)+2/(-0.28990)+3/(0.52660)将/(x)=d代入上已确定的求积公式中,,3dr-l+2+3lJT3故求积公式具有2次代数精度。(4)求积公式中只含有一个待定系数。,当/(x)=LX时,有.4hpdr=-(l÷l)÷0xdx=p+h)+ah1y-)故令/(X)=/时,求积公式精确成立,即=(0+A2)+z2(2×0+2A)解得。=-!-12故有ff(x)dxI/(O)+/()+巳(0)+广()将/(x)=/代入上述已确定的求积公式中,有刎川+得-3川4再另/(x)=x4代入求积公式时有hX3dx=-()+/?4+-o-431JO42lj12l故求积公式具有3次代数精度。2 .分别用梯形公式、SimPSOn公式、COteS公式计算积分ZU,并估计各种方法的误差(要求小数点后至少要保存5位)。解:运用梯形公式,£exdx1e0+=1.8591409其误差凤川=-4/(I-。)'=0.2265235J(,l)(实际误差Wl/公一1.859140,=0.1408591)运用SimPSOn公式,e"dce°+4e*+e=1.7188612其误差为同/)二-e=0.000943851"2880288011112运用Cotes公式,= 1.718282688fexdx-7e0+324+12e2+32e4+7e,Io70其误差为IR(F) =2x111、945l4>945 ×46=0.0000014043 .推到以下三种矩形求积公式;ffxdx(b-a)f(a)+乙用(b-af(¼(b-a)fb)-0-a)2£了(XHX(b-)./(彳+(b-a)2解:将/(%)在=。出Taylor展开,得/(x)=f(a)+f,(x-aeafH,两边在,b上积分,得£0¼=£f(a)dx+£flx-a)dx=0-。)/(。)+二俗一)(")+7(")f(x-卜工=(Z?-a)f(a)+a)2,三a,h将/(x)%=b处TayIor展开,得/(x)=0)+TG)(x-3,两边在LU上积分,得f/(XMX=ff()dx+£,(Xx-b)dx=0。)/卜)+ff'(Xb)dx二俗一)()+广()(加=(Z?-a)f(a)+1,(XZ?-Z>)2,77mh将F(X)½g处TayIOr展开,得/(x)=(*+若M等)+/小_*,三«.b两边在L,U上积分,得fs砒管"(学此-审卜+第尸出-若"=0。)/)+1/''("X匕一。)3,式小司4 .用以下方法计算积分,?,并比拟结果。(1)Romberg方法;(2)三点及五点GaUSS公式;(3)将积分区间分为四等分,用复化两点GaUSS公式。解:用Romberg算法穹=一O/WT* =碇)=;TO(TI = L2,mrp(k + ) _ J()f MT ' "I4m,k = 0,b, I m ni = L2,计算,计算结果如表4.1表4.1k£)心)(*)Ty)O1.3333331.1111111.0992581.098630I1.1666671.0999991.09864021.1166661.09872531.10故3-J1.098630(2)用三点及五点GaUSS-Legendre求积公式,需先对求积区间1,3作如下变换,令y=;(+A)+g(b-)f=t+2那么当yl,3时,r-l,l,且dy=df,三点Gauss公式 0.555555'+ 0.8888889×2.0 + 012+0.77459672-0.7745967)=1.098039283五点Gauss公式 0.2369269×2 - 0.9061978 + 2 + 0.9061798+ 0.4786289xk 2 - 0.5384693 + 2 + 0.5384693+0.5688889×-2=1.098609289(3)用复化的两点GaUSS求积公式计算,需将1,3四等分,那么>2-dt-ir -dt + y Jldt-2.5 1 dt +2 ydtP dtJ2 5 y1,7 J-Idt2皿 +。勺it2,5÷0,5×(-3,z2) + 2.5 + 0.5×(3,z2)+ 3.5 + 0.5×(-3-,z2) + 3.5+ 0.5×(3",z2)+ 4.5 + 0.5×(-3q7)+ 4.5 + 0.5 ×(3M/2)+ 4.5 + 0.5 × (- 3q7)+4.5 + 0.5(3=2)=1.098537573I='F),的真值为I=1.0986122895.用三点公式和五点公式求/(H=厂二在x=1.0,1.1和1.2处的导数值,并估计误差。/(x)的值(+M由表4.2给出。表4.2X1.01.11.21.31.40.25000.22680.20660.18900.1736解:三点求导公式为12()=7-3()+V(1)-(2)÷-"(o)2113,)=-()÷G2)-1,fe)2n6,()=()-V(x1)+3(x2)÷2,fe)2n3上表中取XO=1,x1=LbX2=1.2,分别将有关数值代入上三式,即可得导数的近似值,由于f'GJW麟尸二I则湍卜十°-75故可得误差及导数值如表4.3表4.3X1.01.11.2三点公式-0.24792-0.21694-0.18596/1M-0.25000-0.21596-0.18783理论误差值0.002500.001250.00250实际误差值0.002080.000980.00187

    注意事项

    本文(数值分析习题第四章.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开