欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    5.2.2同角三角函数的基本关系6种常见考法归类.docx

    • 资源ID:754306       资源大小:209.16KB        全文页数:18页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    5.2.2同角三角函数的基本关系6种常见考法归类.docx

    5.2.2同角三角函数的基本关系6种常见考法归类1、同角三角函数的基本关系一关系式文字表述平方关系sin2÷cos2=l同一个角a的正弦、余弦的壬方利等于1商数关系sinatanacosa(+E,ez)同一个角Q的正弦、余弦的商等于角的正切注意以下三点:(1)“同角''有两层含义:一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,即与角的表达形式无关,如sin23÷cos23tt=l成立,但是sin2a÷cos2/?=1就不一定成立.(2)sin2是(Sina)2的简写,读作“sina的平方“,不能将sin2写成sina2,前者是a的正弦的平方,后者是足的正弦,两者是不同的,要弄清它们的区别,并能正确书写.(3)注意同角三角函数的基本关系式都是对于使它们有意义的角而言的,sin2÷cos2=1对一切R恒成立,而tan仅对+4伙Z)成立.2、已知一个三角函数值求其它三角函数值的方法(1)若已知Sina=加,可以先应用公式COSa=±jl-sida,求得CoSa的值,再由公式Iana=黑/求得Uma的值.(2)若已知COSQ=机,可以先应用公式Sina=±J1-cos?。,求得SinQ的值,再由公式tan=墨5求得tana的值.(3)若已知tana=n,可以应用公式tana=snw=z11三sina=ncosa及sin2÷cos2a=1,求得cosa=±-i=,CoSa5+廿.m一sma=±j=j=亏的值.(4)注意要根据角终边所在的象限,判断三角函数的符号.3、利用同角三角函数基本关系化简、证明的常用方法(1)化切为弦,减少函数名称.(2)对含根号的,应先把被开方式化为完全平方,再去掉根号.(3)对含有高次的三角函数式,可借助于因式分解,或构造平方关系,以降基化简.4、正、余弦齐次式的计算TL-.÷cosa6sin2÷ibsinacosa÷ccos2l.,f7.,vlC(1)已知tan=切,可以求:-:或.,-b:TZ厂的值,将分子分母同除以CoSa或cos2,c,sn+Jcosatsn+esincosa+/cosa化成关于tanQ的式子,从而达到求值的目的.对于sin%+bsincosq+ccos2q的求值,可看成分母是1,利用I=Sin2q+cos2q进行代替后分子分母同时除以cos2q,得到关于tan的式子,从而可以求值.(3)齐次式的化切求值问题,体现了数学运算的核心素养.5、sinG±cos与sinOCOS之间的关系(l)(sinJ+cosO)?=1÷2sinOcos0;(sin。-cos9)2=12sinOcos,利用该公式,已知其中一个,能求另外二个,即“知一求二”.求sin夕+cos或sinJ-CoS的值,要注意判断它们的符号.6、三角函数恒等式证明证明三角恒等式的过程,实质上是化异为同的过程,证明恒等式常用以下方法:证明一边等于另一边,一般是由繁到简.证明左、右两边等于同一个式子(左、右归一).比较法:即证左边一右边=0或亲近=1(右边0).证明与已知等式等价的另一个式子成立,从而推出原式成立.考点四由条件等式求正、余弦 考点五sinicos型求值问题 考点六三角函数恒等式的证明考点一已知一个三角函数值求其他三角函数值考点二利用同角三角函数的基本关系化简、求值考点三正、余弦齐次式的计算考点一已知一个三角函数值求其他三角函数值1. (2023上四川高三统考学业考试)已知CoSa=;,则Sina的值为()A,也B.如C.±也D.±且3333【答案】C【分析】根据同角三角函数基本关系求解.【详解】因为CoSa=g,所以Sina=±1-cos2a-±Jl-g=±,故选:C32. (2023上上海松江高三校考期中)已知8se=g,且sinO<O,则tan。的值为()【答案】A【分析】根据同角三角函数的平方关系和商数关系即可得到答案.【详解】由题意得Sine=-Jl-COS*=-,贝IJ tan =Sine _ W _ 4COSe 33故选:A.3. (2023湖北高二统考学业考试)已知Sina=-且<<与,则CoSa=()5243八3r4A.B.C.-D.5445【答案】A【分析】应用平方关系求余弦值,注意角的范围确定值的符号.【详解】由题设COSa=-71-sin2a=一1.故选:A4. (2023上上海静安高三上海市市西中学校考开学考试)设6为第二象限角,若tan。=-;,则Sine+cos,=【答案】4z【分析】由同角三角函数的基本关系,列方程组解出sin0,cos6,求和即可.【详解】8为第二象限角,则Sine>0,COSe<0,(Sine1sin=I,S若tan6=-二,则有cos。2,解得'z-,Siire+ cos*2;一2C2八.25所以sin。+cos-故答案为:一逝.55(2。23.全国高一随堂练习)已知SinT,。在第四象限,求由,tana的值;Q(2)已知COSa=-五,。在第二象限,求Sin,tana的值;4(3)已知tana=-§,求Sina,COSa的值;2(4)已知CoSX=求SinX,tanx的值.【答案】见解析【分析】利用同角三角函数的基本关系代值计算即可.【详解】'U考,。在第四象限,,T¢.Sina.cosq,=1-sina=,tana=-1;2CoSacos。=*,a在第二象限,1.15Sina.sm<z=l-cos6Z=Jana=17COSQr84(2) tana=<0,3.2sin2atan2a16sina=;=j=一,sina+cos'atanka+12543当a为第二象限角时,sina=-,COSa=-W43当。为第四象限角时,sina=-,CoSa=B2(3) COSx=->0,3当a为第一象限角时,sinx=71-cos2a=,tana=,32当Q为第四象限角时,SinX=-五时,tanx=胆=-且.3Cosx2考点二利用同角三角函数的基本关系化简求值6. (2023上江苏高一专题练习)化简:SinaSina():»I+snaI-SinaVl+2sinl0coslOcos100+71-cos210°r.,cos2«C.(3)Slrratana+2SInaCOSa.tana【答案】(D-Zian?。(2)1.SInaCOSa【分析】(1)利用同角三角函数基本关系进行化简;(2)利用完全平方公式和同角三角函数基本关系进行求解;(3)利用同角三角函数的基本关系进行化简.Sina(I - Sina)-Sina(I+sin a) 【详解】 - (l÷sJ)(l-sin.)-2sin2 aI-Sin2。-2 sin2 acos2 a=-2 tan2a.(2)原式=J(COS10+SinIo)oslO+SinlOlCoSI0+sin10cos10+sin10cos10+sin10cos10+sin10/r、.,Sina,COSaC.(3)原式=sina+sa+2SlnacosaCoSaSina7. (2023全国高一随堂练习)化简与求值(1)(1+tan2aJcos2a;f2cos2-1(jl-2sin26>"【答案】(1)1(2)1【分析】(I)根据tan=把里及cos2+sir=l求解.CoSa(2)根据CoS2+sin?a=1求解.【详解】(1)(1+tan2a)cos2a=1+-*n-cos2a=cos2a÷sin2a=1.',Icosa)S2cos?6-1=2cos?6-(cos2夕+sii?)=cos?6-siY6二1-l-2sin2(cos2+sin2)-2sin2cos2-sin28. (2023全国高一随堂练习)化简:COS,口,"+sin&j.V1+sinay1+cos«【答案】答案见详解【分析】先根据式了仃意义求。的范围,然后利用平方关系化简目标式,再根据。进行分类去绝对值,利用辅助角公式化简.JT【详解】由题知,l+sin0,l+CoSa0,得w+2A且工+2E,AeZ,2loc=f2At,kZ时,Sina=I,cosa=O,原式=1;2当=2AMZ时,COSa=1,Sina=0,原式=1;当。的终边不在坐标轴上时,有I-Sina>0,1-COSa>0,所以,原式=X住密住寻当。为第一象限角时,l-sinaI-COSa_(.oR(兀原式=cosa×+sn×=2-(Sm+cosa)=2-2sina+-cosasinaI4当a为第二象限角时,原式=一(I-Sina)+1-COSa=Vsin(a-;);当a为笫三象眼角时,原式=-(1-Sina)-(I-CoSa)=近sin(a+;)一2;当Q为第四象限角时,原式=I-Sina-(I-COSa)=-Vsina综上,当2Ea+2E,ZZ时,原式=2-Jsin(a+:当。为第二象限角时,当。为笫三象眼角时,原式= &sin(a + :J-2;当a为第四象限角时,原式=9. (2023上.宁夏银川.高三银川一中校考阶段练习)若J逅+叵M近=一_LV 1 + cos a yl-cos asin a则a不可能是(A.5TT1015C 20D.11【答案】B【分析】利用同角三角函数的平方关系及三角函数在各象限的符号即可求解.口,H/1-cosaJl+cosa1(1-cosa)2/(l+cosa)2I-COSaI+cosa2详解显然后嬴6F+匕+而不=而22因此11I=-:,从而Sina<0,bInalSina对于A,因为-窘为第四象限角,所以Sina<0,A可能;对于B,因为芳为第二象限角,所以Sina>0,B不可能;15对于C,因为皆为第三象限角,所以Sina<0,C可能;对于D,因为等为第四象限角,所以Sina<0,D可能.故选:B10. (2023全国高一课堂例题)化简:/八2CSUC.(I)SInatan+2SInaCoSa;tana+(180<a<270。).V1-cosaV1+cosa【案】(1)二SlnaCOSa【分析】(I)根据同角三角函数的基本关系式进行化简,从而求得正确答案.(2)根据同角三角函数的基本关系式、三角函数的符号等知识进行化简,从而求得正确答案.【详解】(1)原式=sin?a包+cos?a尊丝+2SinaCoSasin2a+cos2a)

    注意事项

    本文(5.2.2同角三角函数的基本关系6种常见考法归类.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开