欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    第4讲不等式的证明(原卷版).docx

    • 资源ID:799871       资源大小:17.94KB        全文页数:4页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第4讲不等式的证明(原卷版).docx

    第4讲不等式的证明不等式问题是导函数考试的重点,也是难点.一方面是导函数的进一步应用,利用导函数研究出函数的单调性和最值,然后利用单调性来证明和解决不等式问题.反过来,也可以利用不等式来判定导函数的正负号进而来研究函数单调性,所以不等式在基础阶段起重要的衔接作用.在后面的高级课程里面,不等式也是起着关键作用,特别是和放缩法结合来证明不等式,赋值法来找到零点区间等.在后面的极值点偏移和双变量问题都围绕着不等式展开,要好好体会关于不等式的证明,深刻理解不等式在导函数中的作用.不等式问题的核心就是合理地构造函数,函数的构造将在后面章节讲解,这里要重点掌握证明不等式的核心思路.其次是理解不等式的含义是图像之间的上下位置关系,不等式>g(X)的解是“X)在gG)图像上方时X的取值范围.证明无参不等式不等式恒(能)成立问题的转换方法:若/(x)在区间。上有最值,则恒成立:VXcO,(x)>Oo(x)min>O.VxD,/(x)<0<>/(x)max<0.能成立:hOJ(x)>0o/(x)nm>03x0J(x)<0O/(x)nin<0.【例1】已知函数/(x)=e*-d.证明:当.0时,/(x).l.例2已知函数/(x)=(1÷x)111+-,求证:/(x).x.X例3函数/(x)=XT2+3hr.证明:"X),2尢一2对任意正实数X恒成立.不等式恒成立求参数取值范围参变分离参变分离法解不等式恒成立求参数取值范围的步骤:第一步:参变分离.若/(x,«).O(xg£>)能参变分离,则将问题转化为:>"力或a</(x)恒成立.第二步:转换为最值.a>fxoa>/(x)llttx.a<f(x)oa</(x)nlin.第三步:通过导函数求解函数最值,进而得到参数取值范围.例1已知函数x)=e*-依若Wx0,1j(x).0恒成立,求4的取值范围.【例2】已知函数F(X)=Y-e',x>O时,/(力<1,求的取值范围.例3已知函数/(x)=InX-X2-Cixy若/(x)0恒成立,求的取值范围.例4已知函数f(x)=F-皿2_2工(e为自然对数的底数),若x0,+e)时,f(x)>7恒成立,求加的取值范围.不等式恒成立求参数取值范围分类讨论分类讨论法解不等式恒成立求参数取值范围的步骤:第一步:合理构造含参函数(构造函数的方法在后面章节讲).第二步:把不等式恒成立转化为最值问题/(x,)三=>(x,)min0,/(尤M)釉=/(元M)ma0第三步:利用导函数讨论最值的方法,来讨论出函数最值.【例1】己知函数f(力=)手(wR),已知/(x)1对任意xeR恒成立,求。的值.e【例2】已知函数"x)=e"(e'-)-.(1)讨论/(x)的单调性.若/(x).0,求的取值范围.例3已知函数/(x)=x(l-0r)-lnx(R),当x(l,+e)时,/(x)>-OX-JlnX恒成立,求实数。的取值范围.2【例4】已知函数/(x)=X-,一lnx(aR).讨论/(x)的单调性.当X.时,/().0,求4的取值范围.不等式能成立(存在性)求参数取值范围一一参变分离参变分离法解不等式能成立求参数取值范围的步骤:第一步:参变分离.存在X使得FaM)O(XD)能成立,则参变分离,将问题转化为:a>/(x)或</(X)恒成立.第二步:转换为最值.a>f(x)<=>a>f(x)na</(x)OaV/(x)nlax.第三步:通过导函数求解函数最值,进而得到参数取值范围.【例1】设函数/(力=一*|工+1-+山,若存在/e,l,使得不等式/()-G,0成立,求C的取值范围.例2设函数/(x)=(x-2)lnx-at+l,若存在正数与,使得/(M),1-加叫)成立,求实数Q的取值范围.不等式能成立(存在性)求参数取值范围分类讨论分论讨论法求不等式能成立的参数取值范围的步聚:第一步:合理构造含参函数(构造函数的方法在后面章节讲).第二步:把不等式能否成立转化为最值问题./(,a)三)=")max0,/(久期=/(XM)mir0.第三步:利用导函数讨论最值的方法,来讨论出函数的最值.【例1】已知函数/(x)=g+lnA;(a0,R),若在区间(0,e上至少存在一点小,使得/(七)<0成立,求实数。的取值范围.【例2】已知函数/(x)=d一(a+2)+HnX(为实常数),若存在l,e,使得/(x),O成立,求实数的取值范围.

    注意事项

    本文(第4讲不等式的证明(原卷版).docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开